nreimers's picture
search
43238c0
from argparse import ArgumentParser
from sentence_transformers import SentenceTransformer
import torch
import json
import numpy as np
import os
import gzip
import faiss
import time
import zstandard
import torch
from multiprocessing.pool import ThreadPool, Pool
from itertools import repeat
import cohere
cohere_key = os.environ["COHERE_API_KEY"]
co = cohere.Client(cohere_key)
faiss.omp_set_num_threads(4)
def get_bin_embedding(query, model):
query_emb = np.asarray(co.embed(texts=[query], model=model, input_type="search_query").embeddings)
query_emb_bin = np.zeros_like(query_emb, dtype=np.int8)
query_emb_bin[query_emb > 0] = 1
query_emb_bin = np.packbits(query_emb_bin, axis=-1)
return query_emb, query_emb_bin
def search_cluster(args):
#1) Open Centroid
with open(os.path.join(args['input_path'], f"emb/{args['cid_folder']}/{args['cid']}.npy"), "rb") as fIn:
cluster_emb = np.load(fIn)
cluster_index = faiss.IndexBinaryFlat(cluster_emb.shape[1]*8)
cluster_index.add(cluster_emb)
#2) Search
cluster_scores, cluster_doc_ids = cluster_index.search(args['query_emb_bin'], args['topk'])
return [{'cid': args['cid'], 'doc_idx': doc_idx, 'doc_score': doc_score, 'doc_emb': cluster_emb[doc_idx]} for doc_score, doc_idx in zip(cluster_scores[0], cluster_doc_ids[0])]
def search(args, centroids, query):
num_rescore = args.topk*5
#Query encoding
start_time = time.time()
query_emb, query_emb_bin = get_bin_embedding(query, args.model)
print(f"Query encoding took {(time.time()-start_time)*1000:.2f}ms")
start_time = time.time()
#Search nprobe closest centroids
centroid_scores, centroid_ids = centroids.search(query_emb_bin, args.nprobe)
centroid_ids = centroid_ids[0]
print(f"Centroid search took {(time.time()-start_time)*1000:.2f}ms")
start_time = time.time()
all_hits = []
#for cid in centroid_ids:
# global_scores.extend(search_cluster(cid, query_emb_bin))
pool_args = []
for cid in centroid_ids:
cid_str = str(cid.item()).zfill(args.ivf['file_len'])
cid_folder = cid_str[-args.ivf['folder_len']:]
pool_args.append({'cid': cid_str, 'cid_folder': cid_folder, 'input_path': args.input, 'topk': args.topk, 'query_emb_bin': query_emb_bin})
for result in pool.imap_unordered(search_cluster, pool_args, chunksize=10):
all_hits.extend(result)
#Sort global scores
all_hits.sort(key=lambda x: x['doc_score'])
all_hits = all_hits[0:num_rescore]
print(f"Searching in clusters took {(time.time()-start_time)*1000:.2f}ms"); start_time = time.time()
#Dense - Binary Rescoring
for hit in all_hits:
doc_emb = hit['doc_emb']
doc_emb_bin_unpacked = np.unpackbits(doc_emb, axis=-1).astype("int")
doc_emb_bin_unpacked = 2*doc_emb_bin_unpacked-1
hit['cont_score'] = (query_emb @ doc_emb_bin_unpacked.T).item()
all_hits.sort(key=lambda x: x['cont_score'], reverse=True)
all_hits = all_hits[0:args.topk]
print(f"Dense-Binary rescoring took {(time.time()-start_time)*1000:.2f}ms"); start_time = time.time()
#Fetch documents
results = []
dctx = zstandard.ZstdDecompressor()
for hit in all_hits:
text_path = os.path.join(args.input, f"text/{hit['cid'][-args.ivf['folder_len']:]}/{hit['cid']}.jsonl.zst")
with zstandard.open(text_path, "rt", dctx=dctx) as fIn:
for line_idx, line in enumerate(fIn):
if line_idx == hit['doc_idx']:
data = json.loads(line)
data['_score'] = hit['cont_score']
data['_path'] = text_path
results.append(data)
break
print(f"Fetch docs took {(time.time()-start_time)*1000:.2f}ms")
for hit in results[0:3]:
print(hit)
print("-------------")
def main():
parser = ArgumentParser()
parser.add_argument("--model", default="embed-english-v3.0")
parser.add_argument("--input", required=True, help="IVF Folder")
parser.add_argument("--nprobe", type=int, default=100)
parser.add_argument("--topk", type=int, default=10)
args = parser.parse_args()
#Load config
with open(f"{args.input}/config.json") as fIn:
args.ivf = json.load(fIn)
#Restore centroid index
with open(os.path.join(args.input, "centroid_vecs.npy"), "rb") as fIn:
centroid_vec = np.load(fIn)
print("Centroids shape:", centroid_vec.shape)
centroids = faiss.IndexBinaryFlat(centroid_vec.shape[1]*8)
centroids.add(centroid_vec)
while True:
query = input("Query: ")
search(args, centroids, query)
print("\n===========================\n")
if __name__ == "__main__":
pool = Pool(processes=8)
main()