from argparse import ArgumentParser from sentence_transformers import SentenceTransformer import torch import json import numpy as np import os import gzip import faiss import time import zstandard import torch from multiprocessing.pool import ThreadPool, Pool from itertools import repeat import cohere cohere_key = os.environ["COHERE_API_KEY"] co = cohere.Client(cohere_key) faiss.omp_set_num_threads(4) def get_bin_embedding(query, model): query_emb = np.asarray(co.embed(texts=[query], model=model, input_type="search_query").embeddings) query_emb_bin = np.zeros_like(query_emb, dtype=np.int8) query_emb_bin[query_emb > 0] = 1 query_emb_bin = np.packbits(query_emb_bin, axis=-1) return query_emb, query_emb_bin def search_cluster(args): #1) Open Centroid with open(os.path.join(args['input_path'], f"emb/{args['cid_folder']}/{args['cid']}.npy"), "rb") as fIn: cluster_emb = np.load(fIn) cluster_index = faiss.IndexBinaryFlat(cluster_emb.shape[1]*8) cluster_index.add(cluster_emb) #2) Search cluster_scores, cluster_doc_ids = cluster_index.search(args['query_emb_bin'], args['topk']) return [{'cid': args['cid'], 'doc_idx': doc_idx, 'doc_score': doc_score, 'doc_emb': cluster_emb[doc_idx]} for doc_score, doc_idx in zip(cluster_scores[0], cluster_doc_ids[0])] def search(args, centroids, query): num_rescore = args.topk*5 #Query encoding start_time = time.time() query_emb, query_emb_bin = get_bin_embedding(query, args.model) print(f"Query encoding took {(time.time()-start_time)*1000:.2f}ms") start_time = time.time() #Search nprobe closest centroids centroid_scores, centroid_ids = centroids.search(query_emb_bin, args.nprobe) centroid_ids = centroid_ids[0] print(f"Centroid search took {(time.time()-start_time)*1000:.2f}ms") start_time = time.time() all_hits = [] #for cid in centroid_ids: # global_scores.extend(search_cluster(cid, query_emb_bin)) pool_args = [] for cid in centroid_ids: cid_str = str(cid.item()).zfill(args.ivf['file_len']) cid_folder = cid_str[-args.ivf['folder_len']:] pool_args.append({'cid': cid_str, 'cid_folder': cid_folder, 'input_path': args.input, 'topk': args.topk, 'query_emb_bin': query_emb_bin}) for result in pool.imap_unordered(search_cluster, pool_args, chunksize=10): all_hits.extend(result) #Sort global scores all_hits.sort(key=lambda x: x['doc_score']) all_hits = all_hits[0:num_rescore] print(f"Searching in clusters took {(time.time()-start_time)*1000:.2f}ms"); start_time = time.time() #Dense - Binary Rescoring for hit in all_hits: doc_emb = hit['doc_emb'] doc_emb_bin_unpacked = np.unpackbits(doc_emb, axis=-1).astype("int") doc_emb_bin_unpacked = 2*doc_emb_bin_unpacked-1 hit['cont_score'] = (query_emb @ doc_emb_bin_unpacked.T).item() all_hits.sort(key=lambda x: x['cont_score'], reverse=True) all_hits = all_hits[0:args.topk] print(f"Dense-Binary rescoring took {(time.time()-start_time)*1000:.2f}ms"); start_time = time.time() #Fetch documents results = [] dctx = zstandard.ZstdDecompressor() for hit in all_hits: text_path = os.path.join(args.input, f"text/{hit['cid'][-args.ivf['folder_len']:]}/{hit['cid']}.jsonl.zst") with zstandard.open(text_path, "rt", dctx=dctx) as fIn: for line_idx, line in enumerate(fIn): if line_idx == hit['doc_idx']: data = json.loads(line) data['_score'] = hit['cont_score'] data['_path'] = text_path results.append(data) break print(f"Fetch docs took {(time.time()-start_time)*1000:.2f}ms") for hit in results[0:3]: print(hit) print("-------------") def main(): parser = ArgumentParser() parser.add_argument("--model", default="embed-english-v3.0") parser.add_argument("--input", required=True, help="IVF Folder") parser.add_argument("--nprobe", type=int, default=100) parser.add_argument("--topk", type=int, default=10) args = parser.parse_args() #Load config with open(f"{args.input}/config.json") as fIn: args.ivf = json.load(fIn) #Restore centroid index with open(os.path.join(args.input, "centroid_vecs.npy"), "rb") as fIn: centroid_vec = np.load(fIn) print("Centroids shape:", centroid_vec.shape) centroids = faiss.IndexBinaryFlat(centroid_vec.shape[1]*8) centroids.add(centroid_vec) while True: query = input("Query: ") search(args, centroids, query) print("\n===========================\n") if __name__ == "__main__": pool = Pool(processes=8) main()