cent
Browse files- ivf/centroid_index.bin +3 -0
- ivf/centroid_vecs.npy +3 -0
- ivf/config.json +1 -0
- search.py +132 -0
ivf/centroid_index.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4b92fa7c68c49ee38272d1b7c55062991329bae0a72433f1b084cf023918a12c
|
3 |
+
size 1168203954
|
ivf/centroid_vecs.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b2db546fe1f71ed76004d4aa20ff432c64ad3e3c2a52aefb0b86a19582cc266e
|
3 |
+
size 128020480
|
ivf/config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"zfill": 9, "folder": 3, "model": "embed-english-v3.0"}
|
search.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from argparse import ArgumentParser
|
2 |
+
import json
|
3 |
+
import numpy as np
|
4 |
+
import os
|
5 |
+
import faiss
|
6 |
+
import time
|
7 |
+
from multiprocessing.pool import Pool
|
8 |
+
import cohere
|
9 |
+
import zstandard
|
10 |
+
|
11 |
+
cohere_key = os.environ["COHERE_API_KEY"]
|
12 |
+
co = cohere.Client(cohere_key)
|
13 |
+
|
14 |
+
faiss.omp_set_num_threads(4)
|
15 |
+
|
16 |
+
def get_bin_embedding(query, model):
|
17 |
+
query_emb = np.asarray(co.embed(texts=[query], model=model, input_type="search_query").embeddings)
|
18 |
+
query_emb_bin = np.zeros_like(query_emb, dtype=np.int8)
|
19 |
+
query_emb_bin[query_emb > 0] = 1
|
20 |
+
query_emb_bin = np.packbits(query_emb_bin, axis=-1)
|
21 |
+
return query_emb, query_emb_bin
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
+
def search_cluster(args):
|
26 |
+
#1) Open Centroid
|
27 |
+
with open(os.path.join(args['input_path'], f"emb/{args['cid_folder']}/{args['cid']}.npy"), "rb") as fIn:
|
28 |
+
cluster_emb = np.load(fIn)
|
29 |
+
cluster_index = faiss.IndexBinaryFlat(cluster_emb.shape[1]*8)
|
30 |
+
cluster_index.add(cluster_emb)
|
31 |
+
|
32 |
+
#2) Search
|
33 |
+
cluster_scores, cluster_doc_ids = cluster_index.search(args['query_emb_bin'], args['topk'])
|
34 |
+
|
35 |
+
return [{'cid': args['cid'], 'doc_idx': doc_idx, 'doc_score': doc_score, 'doc_emb': cluster_emb[doc_idx]} for doc_score, doc_idx in zip(cluster_scores[0], cluster_doc_ids[0])]
|
36 |
+
|
37 |
+
def search(args, centroids, query):
|
38 |
+
num_rescore = args.topk*5
|
39 |
+
|
40 |
+
#Query encoding
|
41 |
+
start_time = time.time()
|
42 |
+
query_emb, query_emb_bin = get_bin_embedding(query, args.model)
|
43 |
+
print(f"Query encoding took {(time.time()-start_time)*1000:.2f}ms")
|
44 |
+
|
45 |
+
start_time = time.time()
|
46 |
+
#Search nprobe closest centroids
|
47 |
+
centroid_scores, centroid_ids = centroids.search(query_emb_bin, args.nprobe)
|
48 |
+
centroid_ids = centroid_ids[0]
|
49 |
+
print(f"Centroid search took {(time.time()-start_time)*1000:.2f}ms")
|
50 |
+
|
51 |
+
start_time = time.time()
|
52 |
+
all_hits = []
|
53 |
+
|
54 |
+
#for cid in centroid_ids:
|
55 |
+
# global_scores.extend(search_cluster(cid, query_emb_bin))
|
56 |
+
|
57 |
+
pool_args = []
|
58 |
+
for cid in centroid_ids:
|
59 |
+
cid_str = str(cid.item()).zfill(args.ivf['zfill'])
|
60 |
+
cid_folder = cid_str[-args.ivf['folder']:]
|
61 |
+
pool_args.append({'cid': cid_str, 'cid_folder': cid_folder, 'input_path': args.input, 'topk': args.topk, 'query_emb_bin': query_emb_bin})
|
62 |
+
|
63 |
+
for result in pool.imap_unordered(search_cluster, pool_args, chunksize=10):
|
64 |
+
all_hits.extend(result)
|
65 |
+
|
66 |
+
#Sort global scores
|
67 |
+
all_hits.sort(key=lambda x: x['doc_score'])
|
68 |
+
all_hits = all_hits[0:num_rescore]
|
69 |
+
|
70 |
+
print(f"Searching in clusters took {(time.time()-start_time)*1000:.2f}ms"); start_time = time.time()
|
71 |
+
|
72 |
+
#Dense - Binary Rescoring
|
73 |
+
for hit in all_hits:
|
74 |
+
doc_emb = hit['doc_emb']
|
75 |
+
doc_emb_bin_unpacked = np.unpackbits(doc_emb, axis=-1).astype("int")
|
76 |
+
doc_emb_bin_unpacked = 2*doc_emb_bin_unpacked-1
|
77 |
+
hit['cont_score'] = (query_emb @ doc_emb_bin_unpacked.T).item()
|
78 |
+
|
79 |
+
all_hits.sort(key=lambda x: x['cont_score'], reverse=True)
|
80 |
+
all_hits = all_hits[0:args.topk]
|
81 |
+
print(f"Dense-Binary rescoring took {(time.time()-start_time)*1000:.2f}ms"); start_time = time.time()
|
82 |
+
|
83 |
+
|
84 |
+
#Fetch documents
|
85 |
+
results = []
|
86 |
+
|
87 |
+
for hit in all_hits:
|
88 |
+
with zstandard.open(os.path.join(args.input, f"text/{hit['cid'][-args.ivf['folder']:]}/{hit['cid']}.jsonl.zst"), "rt") as fIn:
|
89 |
+
for line_idx, line in enumerate(fIn):
|
90 |
+
if line_idx == hit['doc_idx']:
|
91 |
+
data = json.loads(line)
|
92 |
+
data['_score'] = hit['cont_score']
|
93 |
+
results.append(data)
|
94 |
+
break
|
95 |
+
|
96 |
+
print(f"Fetch docs took {(time.time()-start_time)*1000:.2f}ms")
|
97 |
+
|
98 |
+
for hit in results[0:3]:
|
99 |
+
print(hit)
|
100 |
+
print("-------------")
|
101 |
+
|
102 |
+
|
103 |
+
def main():
|
104 |
+
parser = ArgumentParser()
|
105 |
+
parser.add_argument("--model", default="embed-english-v3.0")
|
106 |
+
parser.add_argument("--input", required=True, help="IVF Folder")
|
107 |
+
parser.add_argument("--nprobe", type=int, default=100)
|
108 |
+
parser.add_argument("--topk", type=int, default=10)
|
109 |
+
args = parser.parse_args()
|
110 |
+
|
111 |
+
#Load config
|
112 |
+
with open(f"{args.input}/config.json") as fIn:
|
113 |
+
args.ivf = json.load(fIn)
|
114 |
+
|
115 |
+
|
116 |
+
#Restore centroid index
|
117 |
+
with open(os.path.join(args.input, "centroid_vecs.npy"), "rb") as fIn:
|
118 |
+
centroid_vec = np.load(fIn)
|
119 |
+
print("Centroids shape:", centroid_vec.shape)
|
120 |
+
centroids = faiss.IndexBinaryFlat(centroid_vec.shape[1]*8)
|
121 |
+
centroids.add(centroid_vec)
|
122 |
+
|
123 |
+
|
124 |
+
while True:
|
125 |
+
query = input("Query: ")
|
126 |
+
search(args, centroids, query)
|
127 |
+
print("\n===========================\n")
|
128 |
+
|
129 |
+
|
130 |
+
if __name__ == "__main__":
|
131 |
+
pool = Pool(processes=8)
|
132 |
+
main()
|