from argparse import ArgumentParser import json import numpy as np import os import faiss import time from multiprocessing.pool import Pool import cohere import zstandard cohere_key = os.environ["COHERE_API_KEY"] co = cohere.Client(cohere_key) faiss.omp_set_num_threads(4) def get_bin_embedding(query, model): query_emb = np.asarray(co.embed(texts=[query], model=model, input_type="search_query").embeddings) query_emb_bin = np.zeros_like(query_emb, dtype=np.int8) query_emb_bin[query_emb > 0] = 1 query_emb_bin = np.packbits(query_emb_bin, axis=-1) return query_emb, query_emb_bin def search_cluster(args): #1) Open Centroid with open(os.path.join(args['input_path'], f"emb/{args['cid_folder']}/{args['cid']}.npy"), "rb") as fIn: cluster_emb = np.load(fIn) cluster_index = faiss.IndexBinaryFlat(cluster_emb.shape[1]*8) cluster_index.add(cluster_emb) #2) Search cluster_scores, cluster_doc_ids = cluster_index.search(args['query_emb_bin'], args['topk']) return [{'cid': args['cid'], 'doc_idx': doc_idx, 'doc_score': doc_score, 'doc_emb': cluster_emb[doc_idx]} for doc_score, doc_idx in zip(cluster_scores[0], cluster_doc_ids[0])] def search(args, centroids, query): num_rescore = args.topk*5 #Query encoding start_time = time.time() query_emb, query_emb_bin = get_bin_embedding(query, args.model) print(f"Query encoding took {(time.time()-start_time)*1000:.2f}ms") start_time = time.time() #Search nprobe closest centroids centroid_scores, centroid_ids = centroids.search(query_emb_bin, args.nprobe) centroid_ids = centroid_ids[0] print(f"Centroid search took {(time.time()-start_time)*1000:.2f}ms") start_time = time.time() all_hits = [] #for cid in centroid_ids: # global_scores.extend(search_cluster(cid, query_emb_bin)) pool_args = [] for cid in centroid_ids: cid_str = str(cid.item()).zfill(args.ivf['zfill']) cid_folder = cid_str[-args.ivf['folder']:] pool_args.append({'cid': cid_str, 'cid_folder': cid_folder, 'input_path': args.input, 'topk': args.topk, 'query_emb_bin': query_emb_bin}) for result in pool.imap_unordered(search_cluster, pool_args, chunksize=10): all_hits.extend(result) #Sort global scores all_hits.sort(key=lambda x: x['doc_score']) all_hits = all_hits[0:num_rescore] print(f"Searching in clusters took {(time.time()-start_time)*1000:.2f}ms"); start_time = time.time() #Dense - Binary Rescoring for hit in all_hits: doc_emb = hit['doc_emb'] doc_emb_bin_unpacked = np.unpackbits(doc_emb, axis=-1).astype("int") doc_emb_bin_unpacked = 2*doc_emb_bin_unpacked-1 hit['cont_score'] = (query_emb @ doc_emb_bin_unpacked.T).item() all_hits.sort(key=lambda x: x['cont_score'], reverse=True) all_hits = all_hits[0:args.topk] print(f"Dense-Binary rescoring took {(time.time()-start_time)*1000:.2f}ms"); start_time = time.time() #Fetch documents results = [] for hit in all_hits: with zstandard.open(os.path.join(args.input, f"text/{hit['cid'][-args.ivf['folder']:]}/{hit['cid']}.jsonl.zst"), "rt") as fIn: for line_idx, line in enumerate(fIn): if line_idx == hit['doc_idx']: data = json.loads(line) data['_score'] = hit['cont_score'] results.append(data) break print(f"Fetch docs took {(time.time()-start_time)*1000:.2f}ms") for hit in results[0:3]: print(hit) print("-------------") def main(): parser = ArgumentParser() parser.add_argument("--model", default="embed-english-v3.0") parser.add_argument("--input", required=True, help="IVF Folder") parser.add_argument("--nprobe", type=int, default=100) parser.add_argument("--topk", type=int, default=10) args = parser.parse_args() #Load config with open(f"{args.input}/config.json") as fIn: args.ivf = json.load(fIn) #Restore centroid index with open(os.path.join(args.input, "centroid_vecs.npy"), "rb") as fIn: centroid_vec = np.load(fIn) print("Centroids shape:", centroid_vec.shape) centroids = faiss.IndexBinaryFlat(centroid_vec.shape[1]*8) centroids.add(centroid_vec) while True: query = input("Query: ") search(args, centroids, query) print("\n===========================\n") if __name__ == "__main__": pool = Pool(processes=8) main()