import json import pandas as pd import matplotlib.pyplot as plt from pathlib import Path import seaborn as sns # Set style plt.style.use('ggplot') sns.set(style="whitegrid") # Load the data data_path = Path("data.jsonl") bookmarks = [] with open(data_path, 'r', encoding='utf-8') as f: for line in f: bookmarks.append(json.loads(line)) # Convert to DataFrame df = pd.DataFrame(bookmarks) print(f"Loaded {len(df)} bookmarks") # Basic statistics print("\nSource Distribution:") source_counts = df['source'].value_counts() print(source_counts) print("\nTop Domains:") domain_counts = df['domain'].value_counts().head(20) print(domain_counts) # Create output directory for plots plots_dir = Path("plots") plots_dir.mkdir(exist_ok=True) # Source distribution pie chart plt.figure(figsize=(10, 7)) source_counts.plot.pie(autopct='%1.1f%%', textprops={'fontsize': 10}) plt.title('Bookmark Sources', fontsize=14) plt.ylabel('') plt.savefig(plots_dir / 'source_distribution.png', bbox_inches='tight') plt.close() print("Created source distribution chart: plots/source_distribution.png") # Top domains bar chart plt.figure(figsize=(12, 8)) domain_counts.head(15).plot.barh() plt.title('Top 15 Domains', fontsize=14) plt.xlabel('Count') plt.ylabel('Domain') plt.tight_layout() plt.savefig(plots_dir / 'top_domains.png', bbox_inches='tight') plt.close() print("Created top domains chart: plots/top_domains.png") # Bookmarks by month (if date data is available) if 'created_at' in df.columns: try: # Convert to datetime if not already if not pd.api.types.is_datetime64_any_dtype(df['created_at']): df['created_at'] = pd.to_datetime(df['created_at'], errors='coerce') # Extract year and month df['year_month'] = df['created_at'].dt.to_period('M') # Count bookmarks by month monthly_counts = df.groupby('year_month').size() plt.figure(figsize=(14, 8)) monthly_counts.plot.bar() plt.title('Bookmarks by Month', fontsize=14) plt.xlabel('Month') plt.ylabel('Count') plt.xticks(rotation=45) plt.tight_layout() plt.savefig(plots_dir / 'bookmarks_by_month.png', bbox_inches='tight') plt.close() print("Created bookmarks by month chart: plots/bookmarks_by_month.png") # Bookmarks by source over time source_time = pd.crosstab(df['year_month'], df['source']) plt.figure(figsize=(14, 8)) source_time.plot.area(alpha=0.6) plt.title('Bookmarks by Source Over Time', fontsize=14) plt.xlabel('Month') plt.ylabel('Count') plt.legend(title='Source') plt.tight_layout() plt.savefig(plots_dir / 'sources_over_time.png', bbox_inches='tight') plt.close() print("Created sources over time chart: plots/sources_over_time.png") except Exception as e: print(f"Error creating time-based charts: {e}") # Content length distribution if 'content_length' in df.columns: plt.figure(figsize=(12, 8)) sns.histplot(df['content_length'].clip(upper=5000), bins=50) plt.title('Content Length Distribution (clipped at 5000 chars)', fontsize=14) plt.xlabel('Content Length (characters)') plt.ylabel('Count') plt.tight_layout() plt.savefig(plots_dir / 'content_length.png', bbox_inches='tight') plt.close() print("Created content length distribution: plots/content_length.png") print("\nAnalysis complete. Check the 'plots' directory for visualizations.")