Update parquet files
Browse files- .gitattributes +1 -0
- README.md +0 -156
- data/train-00000-of-00001.parquet → default/train/0000.parquet +0 -0
- model_scores.png +0 -3
.gitattributes
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
default/train/0000.parquet filter=lfs diff=lfs merge=lfs -text
|
README.md
DELETED
|
@@ -1,156 +0,0 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
-
dataset_info:
|
| 4 |
-
features:
|
| 5 |
-
- name: task_id
|
| 6 |
-
dtype: string
|
| 7 |
-
- name: prompt
|
| 8 |
-
dtype: string
|
| 9 |
-
- name: entry_point
|
| 10 |
-
dtype: string
|
| 11 |
-
- name: test
|
| 12 |
-
dtype: string
|
| 13 |
-
- name: description
|
| 14 |
-
dtype: string
|
| 15 |
-
- name: language
|
| 16 |
-
dtype: string
|
| 17 |
-
- name: canonical_solution
|
| 18 |
-
sequence: string
|
| 19 |
-
splits:
|
| 20 |
-
- name: train
|
| 21 |
-
num_bytes: 505355
|
| 22 |
-
num_examples: 161
|
| 23 |
-
download_size: 174830
|
| 24 |
-
dataset_size: 505355
|
| 25 |
-
configs:
|
| 26 |
-
- config_name: default
|
| 27 |
-
data_files:
|
| 28 |
-
- split: train
|
| 29 |
-
path: data/train-*
|
| 30 |
-
---
|
| 31 |
-
|
| 32 |
-
# Benchmark summary
|
| 33 |
-
|
| 34 |
-
We introduce HumanEval for Kotlin, created from scratch by human experts.
|
| 35 |
-
Solutions and tests for all 161 HumanEval tasks are written by an expert olympiad programmer with 6 years of experience in Kotlin, and independently checked by a programmer with 4 years of experience in Kotlin.
|
| 36 |
-
The tests we implement are eqivalent to the original HumanEval tests for Python.
|
| 37 |
-
|
| 38 |
-
# How to use
|
| 39 |
-
|
| 40 |
-
The benchmark is prepared in a format suitable for MXEval and can be easily integrated into the MXEval pipeline.
|
| 41 |
-
|
| 42 |
-
When testing models on this benchmark, during the code generation step we use early stopping on the `}\n}` sequence to expedite the process. We also perform some code post-processing before evaluation — specifically, we remove all comments and signatures.
|
| 43 |
-
|
| 44 |
-
The code for running an example model on the benchmark using the early stopping and post-processing is available below.
|
| 45 |
-
|
| 46 |
-
```python
|
| 47 |
-
import json
|
| 48 |
-
import re
|
| 49 |
-
|
| 50 |
-
from datasets import load_dataset
|
| 51 |
-
import jsonlines
|
| 52 |
-
import torch
|
| 53 |
-
from transformers import (
|
| 54 |
-
AutoTokenizer,
|
| 55 |
-
AutoModelForCausalLM,
|
| 56 |
-
StoppingCriteria,
|
| 57 |
-
StoppingCriteriaList,
|
| 58 |
-
)
|
| 59 |
-
from tqdm import tqdm
|
| 60 |
-
from mxeval.evaluation import evaluate_functional_correctness
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
class StoppingCriteriaSub(StoppingCriteria):
|
| 64 |
-
def __init__(self, stops, tokenizer):
|
| 65 |
-
(StoppingCriteria.__init__(self),)
|
| 66 |
-
self.stops = rf"{stops}"
|
| 67 |
-
self.tokenizer = tokenizer
|
| 68 |
-
|
| 69 |
-
def __call__(
|
| 70 |
-
self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs
|
| 71 |
-
) -> bool:
|
| 72 |
-
last_three_tokens = [int(x) for x in input_ids.data[0][-3:]]
|
| 73 |
-
decoded_last_three_tokens = self.tokenizer.decode(last_three_tokens)
|
| 74 |
-
|
| 75 |
-
return bool(re.search(self.stops, decoded_last_three_tokens))
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
def generate(problem):
|
| 79 |
-
criterion = StoppingCriteriaSub(stops="\n}\n", tokenizer=tokenizer)
|
| 80 |
-
stopping_criteria = StoppingCriteriaList([criterion])
|
| 81 |
-
|
| 82 |
-
problem = tokenizer.encode(problem, return_tensors="pt").to('cuda')
|
| 83 |
-
sample = model.generate(
|
| 84 |
-
problem,
|
| 85 |
-
max_new_tokens=256,
|
| 86 |
-
min_new_tokens=128,
|
| 87 |
-
pad_token_id=tokenizer.eos_token_id,
|
| 88 |
-
do_sample=False,
|
| 89 |
-
num_beams=1,
|
| 90 |
-
stopping_criteria=stopping_criteria,
|
| 91 |
-
)
|
| 92 |
-
|
| 93 |
-
answer = tokenizer.decode(sample[0], skip_special_tokens=True)
|
| 94 |
-
return answer
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
def clean_asnwer(code):
|
| 98 |
-
# Clean comments
|
| 99 |
-
code_without_line_comments = re.sub(r"//.*", "", code)
|
| 100 |
-
code_without_all_comments = re.sub(
|
| 101 |
-
r"/\*.*?\*/", "", code_without_line_comments, flags=re.DOTALL
|
| 102 |
-
)
|
| 103 |
-
#Clean signatures
|
| 104 |
-
lines = code.split("\n")
|
| 105 |
-
for i, line in enumerate(lines):
|
| 106 |
-
if line.startswith("fun "):
|
| 107 |
-
return "\n".join(lines[i + 1:])
|
| 108 |
-
|
| 109 |
-
return code
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
model_name = "JetBrains/CodeLlama-7B-Kexer"
|
| 113 |
-
dataset = load_dataset("jetbrains/Kotlin_HumanEval")['train']
|
| 114 |
-
problem_dict = {problem['task_id']: problem for problem in dataset}
|
| 115 |
-
|
| 116 |
-
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16).to('cuda')
|
| 117 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 118 |
-
|
| 119 |
-
output = []
|
| 120 |
-
for key in tqdm(list(problem_dict.keys()), leave=False):
|
| 121 |
-
problem = problem_dict[key]["prompt"]
|
| 122 |
-
answer = generate(problem)
|
| 123 |
-
answer = clean_asnwer(answer)
|
| 124 |
-
output.append({"task_id": key, "completion": answer, "language": "kotlin"})
|
| 125 |
-
|
| 126 |
-
output_file = f"answers"
|
| 127 |
-
with jsonlines.open(output_file, mode="w") as writer:
|
| 128 |
-
for line in output:
|
| 129 |
-
writer.write(line)
|
| 130 |
-
|
| 131 |
-
evaluate_functional_correctness(
|
| 132 |
-
sample_file=output_file,
|
| 133 |
-
k=[1],
|
| 134 |
-
n_workers=16,
|
| 135 |
-
timeout=15,
|
| 136 |
-
problem_file=problem_dict,
|
| 137 |
-
)
|
| 138 |
-
|
| 139 |
-
with open(output_file + '_results.jsonl') as fp:
|
| 140 |
-
total = 0
|
| 141 |
-
correct = 0
|
| 142 |
-
for line in fp:
|
| 143 |
-
sample_res = json.loads(line)
|
| 144 |
-
print(sample_res)
|
| 145 |
-
total += 1
|
| 146 |
-
correct += sample_res['passed']
|
| 147 |
-
|
| 148 |
-
print(f'Pass rate: {correct/total}')
|
| 149 |
-
|
| 150 |
-
```
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
# Results
|
| 154 |
-
|
| 155 |
-
We evaluated multiple coding models using this benchmark, and the results are presented in the figure below:
|
| 156 |
-

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data/train-00000-of-00001.parquet → default/train/0000.parquet
RENAMED
|
File without changes
|
model_scores.png
DELETED
Git LFS Details
|