Datasets:
Update README.md
Browse filesAdd README.md file.
README.md
CHANGED
@@ -127,3 +127,144 @@ pretty_name: AwA-Pose-Lite
|
|
127 |
size_categories:
|
128 |
- 10K<n<100K
|
129 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
size_categories:
|
128 |
- 10K<n<100K
|
129 |
---
|
130 |
+
|
131 |
+
## **Dataset Summary**
|
132 |
+
|
133 |
+
AwA Pose, a quadrupedal keypoint detection dataset that offers richer annotations and greater species diversity than existing datasets. The data supports efficiency, advances in research on generalized keypoint detection in animals.
|
134 |
+
|
135 |
+
The dataset was explored, filtered, and stored in a [pyarrow type](https://arrow.apache.org/docs/python/index.html). See : [AwA2_dataset_analysis](https://www.kaggle.com/code/radimkzl/awa2-dataset-analysis)
|
136 |
+
|
137 |
+
***Original Kaggle dataset:*** [AwA2_dataset](https://www.kaggle.com/datasets/radimkzl/awa2-dataset)
|
138 |
+
|
139 |
+
The original data comes from two sources and is described in:
|
140 |
+
|
141 |
+
- [A Novel Dataset for Keypoint Detection of
|
142 |
+
Quadruped Animals from Images](https://arxiv.org/pdf/2108.13958)
|
143 |
+
- [GitHub: prinik/AwA-Pose](https://github.com/prinik/AwA-Pose/tree/main)
|
144 |
+
- [Animals with Attributes 2](https://cvml.ista.ac.at/AwA2/)
|
145 |
+
|
146 |
+
*The dataset contains:*
|
147 |
+
- Lite version of keypoints dataset
|
148 |
+
- Full version of keypoints dataset
|
149 |
+
|
150 |
+
*All version contains:*
|
151 |
+
- train dataset: 90%
|
152 |
+
- validation dataset: 5%
|
153 |
+
- test dataset: 5%
|
154 |
+
|
155 |
+
## **Description of data in the dataset**
|
156 |
+
|
157 |
+
*Class names:*
|
158 |
+
- antelope
|
159 |
+
- bobcat
|
160 |
+
- buffalo
|
161 |
+
- chihuahua
|
162 |
+
- collie
|
163 |
+
- cow
|
164 |
+
- dalmatian
|
165 |
+
- deer
|
166 |
+
- elephant
|
167 |
+
- fox
|
168 |
+
- german+shepherd
|
169 |
+
- giant+panda
|
170 |
+
- giraffe
|
171 |
+
- grizzly+bear
|
172 |
+
- hippopotamus
|
173 |
+
- horse
|
174 |
+
- leopard
|
175 |
+
- lion
|
176 |
+
- moose
|
177 |
+
- otter
|
178 |
+
- ox
|
179 |
+
- persian+cat
|
180 |
+
- pig
|
181 |
+
- polar+bear
|
182 |
+
- rabbit
|
183 |
+
- raccoon
|
184 |
+
- rhinoceros
|
185 |
+
- sheep
|
186 |
+
- siamese+cat
|
187 |
+
- squirrel
|
188 |
+
- tiger
|
189 |
+
- weasel
|
190 |
+
- wolf
|
191 |
+
- zebra
|
192 |
+
|
193 |
+
## **Columns description**
|
194 |
+
|
195 |
+
| name column| description of column |
|
196 |
+
|:--------------|:--------------------------------|
|
197 |
+
| id | id number of records |
|
198 |
+
| right_eye | keypoint values [x,y] |
|
199 |
+
| right_earbase | keypoint values [x,y] |
|
200 |
+
| right_earend | keypoint values [x,y] |
|
201 |
+
| right_antler_base | keypoint values [x,y] |
|
202 |
+
| right_antler_end | keypoint values [x,y] |
|
203 |
+
| left_antler_base | keypoint values [x,y] |
|
204 |
+
| left_antler_end | keypoint values [x,y] |
|
205 |
+
| left_earbase | keypoint values [x,y] |
|
206 |
+
| left_earend | keypoint values [x,y] |
|
207 |
+
| left_eye | keypoint values [x,y] |
|
208 |
+
| nose | keypoint values [x,y] |
|
209 |
+
| upper_jaw | keypoint values [x,y] |
|
210 |
+
| lower_jaw | keypoint values [x,y] |
|
211 |
+
| mouth_end_right | keypoint values [x,y] |
|
212 |
+
| throat_base | keypoint values [x,y] |
|
213 |
+
| neck_base | keypoint values [x,y] |
|
214 |
+
| neck_end | keypoint values [x,y] |
|
215 |
+
| back_base | keypoint values [x,y] |
|
216 |
+
| back_middle | keypoint values [x,y] |
|
217 |
+
| back_end | keypoint values [x,y] |
|
218 |
+
| tail_base | keypoint values [x,y] |
|
219 |
+
| body_middle_right | keypoint values [x,y] |
|
220 |
+
| bbox | bounding box dimension [x1, y1, x2, y2] |
|
221 |
+
| mouth_end_left | keypoint values [x,y] |
|
222 |
+
| throat_end | keypoint values [x,y] |
|
223 |
+
| tail_end | keypoint values [x,y] |
|
224 |
+
| front_left_thai | keypoint values [x,y] |
|
225 |
+
| front_left_knee | keypoint values [x,y] |
|
226 |
+
| front_left_paw | keypoint values [x,y] |
|
227 |
+
| front_right_thai | keypoint values [x,y] |
|
228 |
+
| front_right_paw | keypoint values [x,y] |
|
229 |
+
| front_right_knee | keypoint values [x,y] |
|
230 |
+
| back_left_knee | keypoint values [x,y] |
|
231 |
+
| back_left_paw | keypoint values [x,y] |
|
232 |
+
| back_left_thai | keypoint values [x,y] |
|
233 |
+
| back_right_thai | keypoint values [x,y] |
|
234 |
+
| back_right_paw | keypoint values [x,y] |
|
235 |
+
| back_right_knee | keypoint values [x,y] |
|
236 |
+
| belly_bottom | keypoint values [x,y] |
|
237 |
+
| body_middle_left | keypoint values [x,y] |
|
238 |
+
| name_file | name of file as string |
|
239 |
+
| name_class | name of class as string |
|
240 |
+
| image_base64s | image as string Base64 |
|
241 |
+
| image_width | value of with of image |
|
242 |
+
| image_height | value of height of image |
|
243 |
+
| image_license | text of licence of image |
|
244 |
+
|
245 |
+
## **Notes on data**
|
246 |
+
|
247 |
+
> If a *keypoints* contains `[-1.0, -1.0]`, it means that the point is not visible in the image. These points must be masked when training the model.
|
248 |
+
|
249 |
+
> Images are stored as a Base64 string. They can be transformed using the function:
|
250 |
+
|
251 |
+
```python
|
252 |
+
import base64
|
253 |
+
import io
|
254 |
+
from PIL import Image
|
255 |
+
|
256 |
+
def base64_to_img(base64_str):
|
257 |
+
img_bytes = base64.b64decode(base64_str)
|
258 |
+
img_buffer = io.BytesIO(img_bytes)
|
259 |
+
img = Image.open(img_buffer)
|
260 |
+
|
261 |
+
return img
|
262 |
+
```
|
263 |
+
|
264 |
+
Find out more in [AwA2_dataset_analysis](https://www.kaggle.com/code/radimkzl/awa2-dataset-analysis#Create-AwA2-dataset-for-Hugging-Face...)
|
265 |
+
|
266 |
+
## **Licensing Information**
|
267 |
+
|
268 |
+
Data for keypoints is licensed according to [GitHub: prinik/AwA-Pose](https://github.com/prinik/AwA-Pose/tree/main), this license is [MIT](https://github.com/prinik/AwA-Pose/tree/main?tab=MIT-1-ov-file#readme).
|
269 |
+
|
270 |
+
The license for the images is according to [Animals with Attributes 2](https://cvml.ista.ac.at/AwA2/), see data column `image_license `.
|