File size: 6,837 Bytes
f9b95de b349fbd 79c206a b349fbd 79c206a b349fbd 79c206a b349fbd 79c206a b349fbd 79c206a b349fbd 79c206a b349fbd 79c206a b349fbd 79c206a b349fbd 79c206a b349fbd d4a93ab b349fbd ba3a11b b349fbd ba3a11b b349fbd 79c206a b349fbd 79c206a b349fbd 79c206a b349fbd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
---
tags:
- synthetic-data
- physics
- symbolic-regression
- scientific-discovery
- physical-theories
license: mit
---
# SynPAT: Generating Synthetic Physical Theories with Data
This is the Hugging Face dataset entry for **SynPAT**, a synthetic theory and data generation system developed for the paper:
**SynPAT: Generating Synthetic Physical Theories with Data**
GitHub: [https://github.com/jlenchner/theorizer](https://github.com/jlenchner/theorizer)
SynPAT generates symbolic physical systems and corresponding synthetic data to benchmark symbolic regression and scientific discovery algorithms. Each synthetic system includes symbolic equations, dimensionally consistent variables/constants, algebraic consequences, and both clean and noisy datasets.
---
## Dataset Structure
The dataset is organized hierarchically by configuration and system index:
```
dataset/{config}/System_{n}/
```
Where:
- `{v}` ∈ {6, 7, 8, 9} is the number of symbolic variables
- `{d}` ∈ {2, 3, 4} is the number of derivatives (among the symbolic variables)
- `{e}` ∈ {4, 5, 6} is the number of equations in the system
- `{n}` ∈ {1, 2, 3} indexes the individual system instances per configuration
Each `System_{n}` directory contains exactly 18 files:
### Symbolic System and Consequence:
- `system.txt` — base symbolic system with metadata including variable types, units, constants, and equations
- `consequence.txt` — derived consequence equation (single polynomial) with associated metadata
### Noiseless Data:
- `system.dat` — clean numerical dataset corresponding to `system.txt`
- `consequence.dat` — clean data for the consequence polynomial
### Noisy Data:
For each noise level ε ∈ {0.001, 0.01, 0.05, 0.1}, the following files are included:
- `system_ε.dat` — noisy system data with Gaussian noise of standard deviation ε
- `consequence_ε.dat` — noisy consequence data with Gaussian noise of standard deviation ε
This results in:
- 4 `system_ε.dat` files
- 4 `consequence_ε.dat` files
### Replacement Systems:
- `replacement_1.txt` through `replacement_5.txt` — versions of `system.txt` where one axiom has been replaced, used for consequence prediction benchmarking under ablation.
### Summary of File Count per System:
- 2 base files: `system.txt`, `consequence.txt`
- 2 clean data files: `system.dat`, `consequence.dat`
- 8 noisy data files: `system_ε.dat`, `consequence_ε.dat` for 4 ε values
- 5 replacement files: `replacement_1.txt` through `replacement_5.txt`
**Total per system:** 2 + 2 + 8 + 5 = **17 files**
Each configuration folder (`vars_{v}_derivs_{d}_eqns_{e}`) contains exactly three systems: `System_1`, `System_2`, `System_3`.
The full dataset spans all 4 × 3 × 3 = **36 configurations**, totaling **108 systems** and **1836 files**.
## File Format Example
### system.txt
`system.txt` contains the symbolic system, including variables, constants, derivatives, equations, and units:
```text
Variables: ['Fc', 'Fg', 'W', 'd1', 'd2', 'm1']
Constants: ['G', 'c']
Derivatives: ['dx1dt', 'd2x1dt2', 'dx2dt']
Equations:
dx1dt*dx2dt*d2*m1 - W*d1
d2x1dt2*W*m1 - Fc*Fg*d1
2*c*Fg + dx2dt*Fc - dx2dt*Fg
G*d2x1dt2*d2*m1 + G*Fc*d2 - G*W + 4*d2x1dt2*dx1dt^2*d1^2
-d2x1dt2*Fc*m1 + d2x1dt2*Fg*m1 + Fc*Fg
Units of Measure of Variables: ['s^(-2)*kg*m', 's^(-2)*kg*m', 'm^2*s^(-2)*kg', 'm', 'm', 'kg']
Units of Measure of Constants: ['1/kg*m^3*s^(-2)', '1/s*m']
Units of Measure of Derivatives: ['1/s*m', 's^(-2)*m', '1/s*m']
Units of Measure of Equations:
m^3*s^(-2)*kg
kg^2*m^3*s^(-4)
m^2*s^(-3)*kg
m^5*s^(-4)
kg^2*m^2*s^(-4)
```
### consequence.txt
`consequence.txt` includes **additional metadata** for data generation and symbolic regression tasks:
```text
Variables: ['Fc', 'Fg', 'W', 'd1', 'd2', 'm1']
Constants: ['G', 'c']
Derivatives: ['dx1dt', 'd2x1dt2', 'dx2dt']
Equations:
dx1dt*dx2dt*d2*m1 - W*d1
d2x1dt2*W*m1 - Fc*Fg*d1
2*c*Fg + dx2dt*Fc - dx2dt*Fg
G*d2x1dt2*d2*m1 + G*Fc*d2 - G*W + 4*d2x1dt2*dx1dt^2*d1^2
-d2x1dt2*Fc*m1 + d2x1dt2*Fg*m1 + Fc*Fg
Units of Measure of Variables: ['s^(-2)*kg*m', 's^(-2)*kg*m', 'm^2*s^(-2)*kg', 'm', 'm', 'kg']
Units of Measure of Constants: ['1/kg*m^3*s^(-2)', '1/s*m']
Units of Measure of Derivatives: ['1/s*m', 's^(-2)*m', '1/s*m']
Units of Measure of Equations:
m^3*s^(-2)*kg
kg^2*m^3*s^(-4)
m^2*s^(-3)*kg
m^5*s^(-4)
kg^2*m^2*s^(-4)
Measured Variables: ['d1', 'Fg', 'm1', 'W']
Observed Constants: []
Measured Derivatives: ['d2x1dt2']
Target Polynomial:
d1*m1*d2x1dt2*Fg^2 - m1^2*d2x1dt2^2*W + m1*d2x1dt2*W*Fg
```
### replacement_i.txt
`replacement_i.txt` has the same format as `system.txt` but with one axiom replaced by a different, dimensionally consistent axiom
```text
Variables: ['Fc', 'Fg', 'W', 'd1', 'd2', 'm1']
Constants: ['G', 'c']
Derivatives: ['dx1dt', 'd2x1dt2', 'dx2dt']
Equations:
dx1dt*dx2dt*d2*m1 - W*d1
>>> c*Fc*d2 + c*Fg*d1 - dx1dt*Fg*d1 + dx2dt*Fg*d2 + dx2dt*W <<<
2*c*Fg + dx2dt*Fc - dx2dt*Fg
G*d2x1dt2*d2*m1 + G*Fc*d2 - G*W + 4*d2x1dt2*dx1dt^2*d1^2
-d2x1dt2*Fc*m1 + d2x1dt2*Fg*m1 + Fc*Fg
Units of Measure of Variables: ['s^(-2)*kg*m', 's^(-2)*kg*m', 'm^2*s^(-2)*kg', 'm', 'm', 'kg']
Units of Measure of Constants: ['1/kg*m^3*s^(-2)', '1/s*m']
Units of Measure of Derivatives: ['1/s*m', 's^(-2)*m', '1/s*m']
Units of Measure of Equations:
m^3*s^(-2)*kg
m^3*s^(-3)*kg
m^2*s^(-3)*kg
m^5*s^(-4)
kg^2*m^2*s^(-4)
```
### Data Files
Each `.dat` file contains rows of numerical data corresponding to samples used for learning or evaluation. Each row represents one data point.
- For **`consequence.dat`** and its noisy versions (e.g., `consequence_0.1.dat`), **the columns correspond to the observed constants, followed by measured derivatives, and then measured variables**, in the exact order as specified in `consequence.txt`.
Example row from `consequence_0.1.dat`:
```text
1.925664644193098241e+00 2.872700594236812677e+00 ...
```
- For **`system.dat`** and its noisy versions (e.g., `system_0.1.dat`), **the first line is a header specifying the variable ordering**, followed by rows of numerical data where each column matches the respective variable in the header.
Example header and data snippet from `system_0.1.dat`:
```text
G c dx1dt d2x1dt2 dx2dt Fc W d1 Fg m1 d2
1.000000 1.0000000 ......
```
---
## Authors
- **Karan Srivastava** — University of Wisconsin-Madison ([email protected])
- **Jonathan Lenchner** — IBM T.J. Watson Research Center ([email protected])
- **Joao Goncalves** — IBM T.J. Watson Research Center ([email protected])
- **Lior Horesh** — IBM T.J. Watson Research Center ([email protected])
---
## License
MIT License
---
For issues, questions, or contributions, please visit:
[https://github.com/jlenchner/theorizer](https://github.com/jlenchner/theorizer)
|