Datasets:
ArXiv:
License:
import argparse | |
import numpy as np | |
import matplotlib as mpl | |
import matplotlib.pyplot as plt | |
from matplotlib.patches import Patch | |
from mpl_toolkits.mplot3d.art3d import Poly3DCollection | |
import json | |
class CameraPoseVisualizer: | |
def __init__(self, xlim, ylim, zlim): | |
self.fig = plt.figure(figsize=(18, 7)) | |
self.ax = self.fig.add_subplot(projection='3d') | |
self.plotly_data = None | |
self.ax.set_aspect("auto") | |
self.ax.set_xlim(xlim) | |
self.ax.set_ylim(ylim) | |
self.ax.set_zlim(zlim) | |
self.ax.set_xlabel('x') | |
self.ax.set_ylabel('y') | |
self.ax.set_zlabel('z') | |
print('initialize camera pose visualizer') | |
def extrinsic2pyramid(self, extrinsic, color_map='red', hw_ratio=9/16, base_xval=1, zval=3): | |
vertex_std = np.array([[0, 0, 0, 1], | |
[base_xval, -base_xval * hw_ratio, zval, 1], | |
[base_xval, base_xval * hw_ratio, zval, 1], | |
[-base_xval, base_xval * hw_ratio, zval, 1], | |
[-base_xval, -base_xval * hw_ratio, zval, 1]]) | |
vertex_transformed = vertex_std @ extrinsic.T | |
meshes = [[vertex_transformed[0, :-1], vertex_transformed[1][:-1], vertex_transformed[2, :-1]], | |
[vertex_transformed[0, :-1], vertex_transformed[2, :-1], vertex_transformed[3, :-1]], | |
[vertex_transformed[0, :-1], vertex_transformed[3, :-1], vertex_transformed[4, :-1]], | |
[vertex_transformed[0, :-1], vertex_transformed[4, :-1], vertex_transformed[1, :-1]], | |
[vertex_transformed[1, :-1], vertex_transformed[2, :-1], vertex_transformed[3, :-1], vertex_transformed[4, :-1]]] | |
color = color_map if isinstance(color_map, str) else plt.cm.rainbow(color_map) | |
self.ax.add_collection3d( | |
Poly3DCollection(meshes, facecolors=color, linewidths=0.3, edgecolors=color, alpha=0.35)) | |
def customize_legend(self, list_label): | |
list_handle = [] | |
for idx, label in enumerate(list_label): | |
color = plt.cm.viridis(idx / len(list_label)) | |
patch = Patch(color=color, label=label) | |
list_handle.append(patch) | |
plt.legend(loc='right', bbox_to_anchor=(1.8, 0.5), handles=list_handle) | |
def colorbar(self, max_frame_length): | |
cmap = mpl.cm.rainbow | |
norm = mpl.colors.Normalize(vmin=0, vmax=max_frame_length) | |
self.fig.colorbar(mpl.cm.ScalarMappable(norm=norm, cmap=cmap), ax=self.ax, orientation='vertical', label='Frame Number') | |
def show(self): | |
plt.title('Extrinsic Parameters') | |
plt.savefig('extrinsic_parameters.jpg', format='jpg', dpi=300) | |
plt.show() | |
def get_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--pose_file_path', default='/Users/baijianhong/Documents/python_scripts/camera_extrinsics (1).json', type=str, help='the path of the pose file') | |
parser.add_argument('--hw_ratio', default=9/16, type=float, help='the height over width of the film plane') | |
parser.add_argument('--total_frame', type=int, default=81) | |
parser.add_argument('--stride', type=int, default=4) | |
parser.add_argument('--cam_idx', type=str, default="05") | |
parser.add_argument('--base_xval', type=float, default=0.08) | |
parser.add_argument('--zval', type=float, default=0.15) | |
parser.add_argument('--x_min', type=float, default=-2) | |
parser.add_argument('--x_max', type=float, default=2) | |
parser.add_argument('--y_min', type=float, default=-2) | |
parser.add_argument('--y_max', type=float, default=2) | |
parser.add_argument('--z_min', type=float, default=-1.) | |
parser.add_argument('--z_max', type=float, default=1) | |
return parser.parse_args() | |
def get_c2w(w2cs, transform_matrix, relative_c2w=True): | |
if relative_c2w: | |
target_cam_c2w = np.array([ | |
[1, 0, 0, 0], | |
[0, 1, 0, 0], | |
[0, 0, 1, 0], | |
[0, 0, 0, 1] | |
]) | |
abs2rel = target_cam_c2w @ w2cs[0] | |
ret_poses = [target_cam_c2w, ] + [abs2rel @ np.linalg.inv(w2c) for w2c in w2cs[1:]] | |
else: | |
ret_poses = [np.linalg.inv(w2c) for w2c in w2cs] | |
ret_poses = [transform_matrix @ x for x in ret_poses] | |
return np.array(ret_poses, dtype=np.float32) | |
def parse_matrix(matrix_str): | |
rows = matrix_str.strip().split('] [') | |
matrix = [] | |
for row in rows: | |
row = row.replace('[', '').replace(']', '') | |
if len((list(map(float, row.split())))) == 3: | |
matrix.append((list(map(float, row.split()))) +[0.]) | |
else: | |
matrix.append(list(map(float, row.split()))) | |
return np.array(matrix) | |
if __name__ == '__main__': | |
args = get_args() | |
with open(args.pose_file_path, 'r') as file: | |
data = json.load(file) | |
cameras = [parse_matrix(data[f"frame{i}"][f"cam{args.cam_idx}"]) for i in range(0, args.total_frame, args.stride)] | |
cameras = np.transpose(np.stack(cameras), (0, 2, 1)) | |
w2cs = [] | |
for cam in cameras: | |
if cam.shape[0] == 3: | |
cam = np.vstack((cam, np.array([[0, 0, 0, 1]]))) | |
cam = cam[:, [1, 2, 0, 3]] | |
cam[:3, 1] *= -1. | |
w2cs.append(np.linalg.inv(cam)) | |
transform_matrix = np.array([[1, 0, 0, 0], [0, 0, 1, 0], [0, -1, 0, 0], [0, 0, 0, 1]]) | |
c2ws = get_c2w(w2cs, transform_matrix, True) | |
scale = max(max(abs(c2w[:3, 3])) for c2w in c2ws) | |
if scale > 1e-3: # otherwise, pan or tilt | |
for c2w in c2ws: | |
c2w[:3, 3] /= scale | |
visualizer = CameraPoseVisualizer([args.x_min, args.x_max], [args.y_min, args.y_max], [args.z_min, args.z_max]) | |
for frame_idx, c2w in enumerate(c2ws): | |
visualizer.extrinsic2pyramid(c2w, frame_idx / len(cameras), hw_ratio=args.hw_ratio, base_xval=args.base_xval, | |
zval=(args.zval)) | |
visualizer.colorbar(len(cameras)) | |
visualizer.show() |