File size: 3,040 Bytes
56a5c74
f0976ba
 
 
56a5c74
 
 
 
20487dd
 
 
 
 
 
 
 
 
 
ad528b6
 
9e6a1f3
 
 
 
56a5c74
 
 
 
 
c17c0fb
 
 
93d3555
 
fd67a00
0eb8606
fd67a00
 
0eb8606
fd67a00
cffebce
fd67a00
cffebce
fd67a00
 
0eb8606
fd67a00
f314fd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0eb8606
fd67a00
0eb8606
fd67a00
0eb8606
 
 
 
fd67a00
0eb8606
fd67a00
0eb8606
fd67a00
0eb8606
fd67a00
0eb8606
 
52e745b
 
 
 
 
 
0eb8606
 
fd67a00
0eb8606
fd67a00
0eb8606
fd67a00
52e745b
 
 
 
 
93d3555
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
---
license: cc0-1.0
size_categories:
- 100M<n<1B
dataset_info:
  features:
  - name: fen
    dtype: string
  - name: line
    dtype: string
  - name: depth
    dtype: int64
  - name: knodes
    dtype: int64
  - name: cp
    dtype: int64
  - name: mate
    dtype: int64
  splits:
  - name: train
    num_bytes: 86266003148
    num_examples: 618678212
  download_size: 30329004321
  dataset_size: 86266003148
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
tags:
- chess
- stockfish
- lichess
- games
---
# Dataset Card for the Lichess Evaluations dataset

<!-- Provide a quick summary of the dataset. -->
## Dataset Description

**247,858,650 chess positions** evaluated with Stockfish at various depths and node count. Produced by, and for, the [Lichess analysis board](https://lichess.org/analysis), running various flavours of Stockfish within user browsers. This version of the dataset is a de-normalized version of [the original dataset](https://database.lichess.org/#evals) and contains **618,678,212 rows**.

This dataset is updated monthly, and was last updated on June 11th, 2025.


### Dataset Creation

```python
from datasets import load_dataset

dset = load_dataset("json", data_files="lichess_db_eval.jsonl", split="train")

def batch_explode_rows(batch):
    exploded = {"fen": [], "line": [], "depth": [], "knodes": [], "cp": [], "mate": []}
    for fen, evals in zip(batch["fen"], batch["evals"]):
        for eval_ in evals:
            for pv in eval_["pvs"]:
                exploded["fen"].append(fen)
                exploded["line"].append(pv["line"])
                exploded["depth"].append(eval_["depth"])
                exploded["knodes"].append(eval_["knodes"])
                exploded["cp"].append(pv["cp"])
                exploded["mate"].append(pv["mate"])
    return exploded

dset = dset.map(batch_explode_rows, batched=True, batch_size=64, num_proc=12, remove_columns=dset.column_names)

dset.push_to_hub("Lichess/chess-evaluations")
```
### Dataset Usage

Using the `datasets` library:

```python
from datasets import load_dataset
dset = load_dataset("Lichess/chess-evaluations", split="train")
```

## Dataset Details

### Dataset Sample

One row of the dataset looks like this:

```python
{
  "fen": "2bq1rk1/pr3ppn/1p2p3/7P/2pP1B1P/2P5/PPQ2PB1/R3R1K1 w - -",
  "line": "g2e4 f7f5 e4b7 c8b7 f2f3 b7f3 e1e6 d8h4 c2h2 h4g4",
  "depth": 36,
  "knodes": 206765,
  "cp": 311,
  "mate": None
}
```

### Dataset Fields

Every row of the dataset contains the following fields:

- **`fen`**: `string`, the position FEN only contains pieces, active color, castling rights, and en passant square.
- **`line`**: `string`, the principal variation, in UCI format.
- **`depth`**: `string`, the depth reached by the engine.
- **`knodes`**: `int`, the number of kilo-nodes searched by the engine.
- **`cp`**: `int`, the position's centipawn evaluation. This is `None` if mate is certain.
- **`mate`**: `int`, the position's mate evaluation. This is `None` if mate is not certain.