File size: 1,071 Bytes
fc85d5b
b8c5b9f
 
fc85d5b
 
 
b8c5b9f
 
 
 
 
 
f9d1fe1
 
 
 
b8c5b9f
 
f9d1fe1
edeea39
b8c5b9f
f9d1fe1
b8c5b9f
f9d1fe1
 
b8c5b9f
 
 
 
 
 
 
dfe7006
 
b8c5b9f
b4a8ae9
 
 
 
fd55107
b83b25b
b4a8ae9
b83b25b
 
 
b4a8ae9
 
 
 
b83b25b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
---
language:
- en
license: apache-2.0
task_categories:
- text-classification
dataset_info:
  features:
  - name: text
    dtype: string
  - name: label
    dtype: int64
  - name: bert_embeddings
    sequence: float32
  - name: roberta_embeddings
    sequence: float32
  splits:
  - name: train
    num_bytes: 45378307
    num_examples: 4487
  - name: test
    num_bytes: 5147293
    num_examples: 499
  download_size: 49990113
  dataset_size: 50525600
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: test
    path: data/test-*
tags:
- fake-news
---

Dataset Source: [Fake News Detection Challenge KDD 2020](https://www.kaggle.com/competitions/fakenewskdd2020/data)

This is a copied and reformatted version of the Fake News Detection Challenge KDD 2020.

We use the raw `train.csv` from the official Kaggle Dataset and split the data into train and test sets.

- text: text of the article (str)
- embeddings: BERT embeddings (768, )
- label: (int)
  - 1: fake
  - 0: true

Datasets Distribution:
- Train: 4487
- Test: 499