--- dataset_info: features: - name: image dtype: image - name: item_ID dtype: string - name: query dtype: string - name: title dtype: string - name: position dtype: int64 splits: - name: data num_bytes: 22251545141.2 num_examples: 982700 download_size: 21955883446 dataset_size: 22251545141.2 configs: - config_name: default data_files: - split: data path: data/data-* ---
Blog GitHub Repo Blog Slack
# Marqo Ecommerce Embedding Models **In this work, we introduce the GoogleShopping-1m dataset for evaluation.** This dataset comes with the release of our state-of-the-art embedding models for ecommerce products: [Marqo-Ecommerce-B](https://huggingface.co/Marqo/marqo-ecommerce-embeddings-B) and [Marqo-Ecommerce-L](https://huggingface.co/Marqo/marqo-ecommerce-embeddings-L). **Released Content**: 1) Marqo-Ecommerce-B and Marqo-Ecommerce-L embedding models 2) GoogleShopping-1m and AmazonProducts-3m for evaluation 3) Evaluation Code The benchmarking results show that the Marqo-Ecommerce models consistently outperformed *all other models* across various metrics. Specifically, `marqo-ecommerce-L` achieved an average improvement of **17.6% in MRR** and **20.5% in nDCG@10** when compared with the current best open source model, `ViT-SO400M-14-SigLIP` across all three tasks in the `marqo-ecommerce-hard` dataset. When compared with the best private model, `Amazon-Titan-Multimodal`, we saw an average improvement of **38.9% in MRR** and **45.1% in nDCG@10** across all three tasks, and **35.9% in Recall** across the Text-to-Image tasks in the `marqo-ecommerce-hard` dataset. multi split visual More benchmarking results can be found below. ## Models | **Embedding Model** | **#Params (m)** | **Dimension** | **HuggingFace** | **Download .pt** | |---------------------| --- |---------------|------------------------------------|-------------------------------------------------------------------------------------------------------------| | Marqo-Ecommerce-B | 203 | 768 | [Marqo/marqo-ecommerce-embeddings-B](https://huggingface.co/Marqo/marqo-ecommerce-embeddings-B) | [link](https://marqo-gcl-public.s3.us-west-2.amazonaws.com/marqo-general-ecomm/marqo-ecomm-embeddings-b.pt) | | Marqo-Ecommerce-L | 652 | 1024 | [Marqo/marqo-ecommerce-embeddings-L](https://huggingface.co/Marqo/marqo-ecommerce-embeddings-L) | [link](https://marqo-gcl-public.s3.us-west-2.amazonaws.com/marqo-general-ecomm/marqo-ecomm-embeddings-l.pt) | ### Load from HuggingFace with transformers To load the models in Transformers, see below. The models are hosted on [Hugging Face](https://huggingface.co/collections/Marqo/marqo-ecommerce-embeddings-66f611b9bb9d035a8d164fbb) and loaded using [Transformers](https://github.com/huggingface/transformers). ```python from transformers import AutoModel, AutoProcessor import torch from PIL import Image import requests model_name= 'Marqo/marqo-ecommerce-embeddings-L' # model_name = 'Marqo/marqo-ecommerce-embeddings-B' model = AutoModel.from_pretrained(model_name, trust_remote_code=True) processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True) img = Image.open(requests.get('https://raw.githubusercontent.com/marqo-ai/marqo-ecommerce-embeddings/refs/heads/main/images/dining-chairs.png', stream=True).raw).convert("RGB") image = [img] text = ["dining chairs", "a laptop", "toothbrushes"] processed = processor(text=text, images=image, padding='max_length', return_tensors="pt") processor.image_processor.do_rescale = False with torch.no_grad(): image_features = model.get_image_features(processed['pixel_values'], normalize=True) text_features = model.get_text_features(processed['input_ids'], normalize=True) text_probs = (100 * image_features @ text_features.T).softmax(dim=-1) print(text_probs) # [1.0000e+00, 8.3131e-12, 5.2173e-12] ``` ### Load from HuggingFace with OpenCLIP To load the models in OpenCLIP, see below. The models are hosted on [Hugging Face](https://huggingface.co/collections/Marqo/marqo-ecommerce-embeddings-66f611b9bb9d035a8d164fbb) and loaded using [OpenCLIP](https://github.com/mlfoundations/open_clip). You can also find this code inside `run_models.py`. ``` pip install open_clip_torch ``` ```python from PIL import Image import open_clip import requests import torch # Specify model from Hugging Face Hub model_name = 'hf-hub:Marqo/marqo-ecommerce-embeddings-L' # model_name = 'hf-hub:Marqo/marqo-ecommerce-embeddings-B' model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms(model_name) tokenizer = open_clip.get_tokenizer(model_name) # Preprocess the image and tokenize text inputs # Load an example image from a URL img = Image.open(requests.get('https://raw.githubusercontent.com/marqo-ai/marqo-ecommerce-embeddings/refs/heads/main/images/dining-chairs.png', stream=True).raw) image = preprocess_val(img).unsqueeze(0) text = tokenizer(["dining chairs", "a laptop", "toothbrushes"]) # Perform inference with torch.no_grad(), torch.cuda.amp.autocast(): image_features = model.encode_image(image, normalize=True) text_features = model.encode_text(text, normalize=True) # Calculate similarity probabilities text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1) # Display the label probabilities print("Label probs:", text_probs) # [1.0000e+00, 8.3131e-12, 5.2173e-12] ``` ### Evaluation [Generalised Contrastiove Learning](https://github.com/marqo-ai/GCL) (GCL) is used for the evaluation. The following code can also be found in `scripts`. ``` git clone https://github.com/marqo-ai/GCL ``` Install the packages required by GCL. **1. GoogleShopping-Text2Image Retrieval.** ``` cd ./GCL MODEL=hf-hub:Marqo/marqo-ecommerce-B outdir=/MarqoModels/GE/marqo-ecommerce-B/gs-title2image hfdataset=Marqo/google-shopping-general-eval python evals/eval_hf_datasets_v1.py \ --model_name $MODEL \ --hf-dataset $hfdataset \ --output-dir $outdir \ --batch-size 1024 \ --num_workers 8 \ --left-key "['title']" \ --right-key "['image']" \ --img-or-txt "[['txt'], ['img']]" \ --left-weight "[1]" \ --right-weight "[1]" \ --run-queries-cpu \ --top-q 4000 \ --doc-id-key item_ID \ --context-length "[[64], [0]]" ``` **2. GoogleShopping-Category2Image Retrieval.** ``` cd ./GCL MODEL=hf-hub:Marqo/marqo-ecommerce-B outdir=/MarqoModels/GE/marqo-ecommerce-B/gs-cat2image hfdataset=Marqo/google-shopping-general-eval python evals/eval_hf_datasets_v1.py \ --model_name $MODEL \ --hf-dataset $hfdataset \ --output-dir $outdir \ --batch-size 1024 \ --num_workers 8 \ --left-key "['query']" \ --right-key "['image']" \ --img-or-txt "[['txt'], ['img']]" \ --left-weight "[1]" \ --right-weight "[1]" \ --run-queries-cpu \ --top-q 4000 \ --doc-id-key item_ID \ --context-length "[[64], [0]]" ``` **3. AmazonProducts-Category2Image Retrieval.** ``` cd ./GCL MODEL=hf-hub:Marqo/marqo-ecommerce-B outdir=/MarqoModels/GE/marqo-ecommerce-B/ap-title2image hfdataset=Marqo/amazon-products-eval python evals/eval_hf_datasets_v1.py \ --model_name $MODEL \ --hf-dataset $hfdataset \ --output-dir $outdir \ --batch-size 1024 \ --num_workers 8 \ --left-key "['title']" \ --right-key "['image']" \ --img-or-txt "[['txt'], ['img']]" \ --left-weight "[1]" \ --right-weight "[1]" \ --run-queries-cpu \ --top-q 4000 \ --doc-id-key item_ID \ --context-length "[[64], [0]]" ``` ## Detailed Performance Our benchmarking process was divided into two distinct regimes, each using different datasets of ecommerce product listings: marqo-ecommerce-hard and marqo-ecommerce-easy. Both datasets contained product images and text and only differed in size. The "easy" dataset is approximately 10-30 times smaller (200k vs 4M products), and designed to accommodate rate-limited models, specifically Cohere-Embeddings-v3 and GCP-Vertex (with limits of 0.66 rps and 2 rps respectively). The "hard" dataset represents the true challenge, since it contains four million ecommerce product listings and is more representative of real-world ecommerce search scenarios. Within both these scenarios, the models were benchmarked against three different tasks: * Google Shopping Text-to-Image * Google Shopping Category-to-Image * Amazon Products Text-to-Image ### Marqo-Ecommerce-Hard Marqo-Ecommerce-Hard looks into the comprehensive evaluation conducted using the full 4 million dataset, highlighting the robust performance of our models in a real-world context. **GoogleShopping-Text2Image Retrieval.** | **Embedding Model** | **mAP** | **R@10** | **MRR** | **nDCG@10** | |-------------------------|------|-------|------|---------| | **Marqo-Ecommerce-L** | **0.682**| **0.878** | **0.683**| **0.726** | | Marqo-Ecommerce-B | 0.623| 0.832 | 0.624| 0.668 | | ViT-SO400M-14-SigLip | 0.573| 0.763 | 0.574| 0.613 | | ViT-L-16-SigLip | 0.540| 0.722 | 0.540| 0.577 | | ViT-B-16-SigLip | 0.476| 0.660 | 0.477| 0.513 | | Amazon-Titan-MultiModal | 0.475| 0.648 | 0.475| 0.509 | | Jina-V1-CLIP | 0.285| 0.402 | 0.285| 0.306 | **GoogleShopping-Category2Image Retrieval.** | **Embedding Model** | **mAP** | **P@10** | **MRR** | **nDCG@10** | |-----------------------------|---------|----------|---------|-------------| | **Marqo-Ecommerce-L** | **0.463** | **0.652** | **0.822** | **0.666** | | Marqo-Ecommerce-B | 0.423 | 0.629 | 0.810 | 0.644 | | ViT-SO400M-14-SigLip | 0.352 | 0.516 | 0.707 | 0.529 | | ViT-L-16-SigLip | 0.324 | 0.497 | 0.687 | 0.509 | | ViT-B-16-SigLip | 0.277 | 0.458 | 0.660 | 0.473 | | Amazon-Titan-MultiModal | 0.246 | 0.429 | 0.642 | 0.446 | | Jina-V1-CLIP | 0.123 | 0.275 | 0.504 | 0.294 | **AmazonProducts-Text2Image Retrieval.** | **Embedding Model** | **mAP** | **R@10** | **MRR** | **nDCG@10** | |-----------------------------|---------|----------|---------|-------------| | **Marqo-Ecommerce-L** | **0.658** | **0.854** | **0.663** | **0.703** | | Marqo-Ecommerce-B | 0.592 | 0.795 | 0.597 | 0.637 | | ViT-SO400M-14-SigLip | 0.560 | 0.742 | 0.564 | 0.599 | | ViT-L-16-SigLip | 0.544 | 0.715 | 0.548 | 0.580 | | ViT-B-16-SigLip | 0.480 | 0.650 | 0.484 | 0.515 | | Amazon-Titan-MultiModal | 0.456 | 0.627 | 0.457 | 0.491 | | Jina-V1-CLIP | 0.265 | 0.378 | 0.266 | 0.285 | ### Marqo-Ecommerce-Easy This dataset is about 10-30 times smaller than the Marqo-Ecommerce-Hard, and designed to accommodate rate-limited models, specifically Cohere-Embeddings-v3 and GCP-Vertex. **GoogleShopping-Text2Image Retrieval.** | **Embedding Model** | **mAP** | **R@10** | **MRR** | **nDCG@10** | |-----------------------------|---------|----------|---------|-------------| | **Marqo-Ecommerce-L** | **0.879** | **0.971** | **0.879** | **0.901** | | Marqo-Ecommerce-B | 0.842 | 0.961 | 0.842 | 0.871 | | ViT-SO400M-14-SigLip | 0.792 | 0.935 | 0.792 | 0.825 | | GCP-Vertex | 0.740 | 0.910 | 0.740 | 0.779 | | ViT-L-16-SigLip | 0.754 | 0.907 | 0.754 | 0.789 | | ViT-B-16-SigLip | 0.701 | 0.870 | 0.701 | 0.739 | | Amazon-Titan-MultiModal | 0.694 | 0.868 | 0.693 | 0.733 | | Jina-V1-CLIP | 0.480 | 0.638 | 0.480 | 0.511 | | Cohere-embedding-v3 | 0.358 | 0.515 | 0.358 | 0.389 | **GoogleShopping-Category2Image Retrieval.** | **Embedding Model** | **mAP** | **P@10** | **MRR** | **nDCG@10** | |-----------------------------|---------|----------|---------|-------------| | **Marqo-Ecommerce-L** | **0.515** | **0.358** | **0.764** | **0.590** | | Marqo-Ecommerce-B | 0.479 | 0.336 | 0.744 | 0.558 | | ViT-SO400M-14-SigLip | 0.423 | 0.302 | 0.644 | 0.487 | | GCP-Vertex | 0.417 | 0.298 | 0.636 | 0.481 | | ViT-L-16-SigLip | 0.392 | 0.281 | 0.627 | 0.458 | | ViT-B-16-SigLip | 0.347 | 0.252 | 0.594 | 0.414 | | Amazon-Titan-MultiModal | 0.308 | 0.231 | 0.558 | 0.377 | | Jina-V1-CLIP | 0.175 | 0.122 | 0.369 | 0.229 | | Cohere-embedding-v3 | 0.136 | 0.110 | 0.315 | 0.178 | **AmazonProducts-Text2Image Retrieval.** | **Embedding Model** | **mAP** | **R@10** | **MRR** | **nDCG@10** | |-----------------------------|---------|----------|---------|-------------| | **Marqo-Ecommerce-L** | **0.92** | **0.978** | **0.928** | **0.940** | | Marqo-Ecommerce-B | 0.897 | 0.967 | 0.897 | 0.914 | | ViT-SO400M-14-SigLip | 0.860 | 0.954 | 0.860 | 0.882 | | ViT-L-16-SigLip | 0.842 | 0.940 | 0.842 | 0.865 | | GCP-Vertex | 0.808 | 0.933 | 0.808 | 0.837 | | ViT-B-16-SigLip | 0.797 | 0.917 | 0.797 | 0.825 | | Amazon-Titan-MultiModal | 0.762 | 0.889 | 0.763 | 0.791 | | Jina-V1-CLIP | 0.530 | 0.699 | 0.530 | 0.565 | | Cohere-embedding-v3 | 0.433 | 0.597 | 0.433 | 0.465 | ## Citation ``` @software{zhu2024marqoecommembed_2024, author = {Tianyu Zhu and and Jesse Clark}, month = oct, title = {{Marqo Ecommerce Embeddings - Foundation Model for Product Embeddings}}, url = {https://github.com/marqo-ai/marqo-ecommerce-embeddings/}, version = {1.0.0}, year = {2024} } ```