norway vid
Browse files- raw_data/videos/new_videos/commands.txt +13 -1
- raw_data/videos/new_videos/{norway_DJI_0741_540p.mp4 → norway_DJI_0708_540p.mp4} +2 -2
- scripts/dronescapes_viewer/dronescapes_representations.py +2 -2
- scripts/dronescapes_viewer/dronescapes_viewer.ipynb +0 -0
- scripts/m2f_metrics_analysis/m2f_main.ipynb +3 -3
- scripts/semantic_mapper/semantic_mapper.py +4 -4
- vre_dronescapes/cfg.yaml +3 -3
- vre_dronescapes/commands.txt +3 -3
raw_data/videos/new_videos/commands.txt
CHANGED
@@ -1,7 +1,18 @@
|
|
|
|
|
|
1 |
ffmpeg -i DJI_0372.MP4 -vf scale=960:540 -c:a copy ovaselu_DJI_0372_540p.mp4
|
|
|
|
|
|
|
2 |
ffmpeg -i DJI_0741_a2.MP4 -vf scale=960:540 -c:a copy politehnica_DJI_0741_a2_540p.mp4
|
|
|
|
|
|
|
3 |
ffmpeg -i DJI_0418.MP4 -vf scale=960:540 -c:a copy raciu_DJI_0418_540p.mp4
|
4 |
-
|
|
|
|
|
|
|
5 |
|
6 |
# paris
|
7 |
yt-dlp https://www.youtube.com/watch?v=rR_2c1YoEs8
|
@@ -15,5 +26,6 @@ ffmpeg -i 'San Francisco Via Drone Part 1 [Fsw1fWtyqrM].webm' -vf scale=960:540
|
|
15 |
yt-dlp https://www.youtube.com/watch?v=1vjfHoNUNcE
|
16 |
ffmpeg -i 'Rio De Janeiro Brazil via Drone [1vjfHoNUNcE].webm' -vf scale=960:540 -ss 00:00:01 -to 00:03:30 -c:v libx264 riodejaneiro_youtube_1_540p.mp4
|
17 |
|
|
|
18 |
yt-dlp https://www.youtube.com/watch?v=X-LFEO3XQhM
|
19 |
ffmpeg -i 'Oil rig at Sheerness docks. [X-LFEO3XQhM].webm' -vf scale=960:540 -ss 00:00:25 -to 00:03:10 -c:v libx264 sheerness_youtube_1_540p.mp4
|
|
|
1 |
+
# ovaselu
|
2 |
+
gdown 18GwrZ6pZBOB-21JIIxivcXfT6Soid2_M
|
3 |
ffmpeg -i DJI_0372.MP4 -vf scale=960:540 -c:a copy ovaselu_DJI_0372_540p.mp4
|
4 |
+
|
5 |
+
# politehnica
|
6 |
+
gdown 15dzWjpPTybn9gQ-d-75woDxk2BIjJbXQ
|
7 |
ffmpeg -i DJI_0741_a2.MP4 -vf scale=960:540 -c:a copy politehnica_DJI_0741_a2_540p.mp4
|
8 |
+
|
9 |
+
# raciu
|
10 |
+
gdown 1XYtq046nucfYTZSY06NQSqAMkHGJfNzh
|
11 |
ffmpeg -i DJI_0418.MP4 -vf scale=960:540 -c:a copy raciu_DJI_0418_540p.mp4
|
12 |
+
|
13 |
+
# norway 0708
|
14 |
+
gdown 1fTLXOfq4CouMIGGcMBG27nipajv5hbIz
|
15 |
+
ffmpeg -i DJI_0708.MP4 -vf scale=960:540 -c:a copy norway_DJI_0708_540p.mp4
|
16 |
|
17 |
# paris
|
18 |
yt-dlp https://www.youtube.com/watch?v=rR_2c1YoEs8
|
|
|
26 |
yt-dlp https://www.youtube.com/watch?v=1vjfHoNUNcE
|
27 |
ffmpeg -i 'Rio De Janeiro Brazil via Drone [1vjfHoNUNcE].webm' -vf scale=960:540 -ss 00:00:01 -to 00:03:30 -c:v libx264 riodejaneiro_youtube_1_540p.mp4
|
28 |
|
29 |
+
# sheerness dockyard
|
30 |
yt-dlp https://www.youtube.com/watch?v=X-LFEO3XQhM
|
31 |
ffmpeg -i 'Oil rig at Sheerness docks. [X-LFEO3XQhM].webm' -vf scale=960:540 -ss 00:00:25 -to 00:03:10 -c:v libx264 sheerness_youtube_1_540p.mp4
|
raw_data/videos/new_videos/{norway_DJI_0741_540p.mp4 → norway_DJI_0708_540p.mp4}
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:44f9c14638bbb2d0037b0a4cefc5e62762bb4f017fcd789a45ddbd668cca81b4
|
3 |
+
size 30453475
|
scripts/dronescapes_viewer/dronescapes_representations.py
CHANGED
@@ -13,7 +13,7 @@ def get_gt_tasks() -> dict[str, Representation]:
|
|
13 |
[255, 0, 0], [0, 0, 255], [0, 255, 255], [127, 127, 63]]
|
14 |
classes_8 = ["land", "forest", "residential", "road", "little-objects", "water", "sky", "hill"]
|
15 |
tasks = [
|
16 |
-
SemanticRepresentation("semantic_output", classes=classes_8, color_map=color_map),
|
17 |
DepthRepresentation("depth_output", min_depth=0, max_depth=300),
|
18 |
NormalsRepresentation("camera_normals_output"),
|
19 |
]
|
@@ -25,7 +25,7 @@ def get_other_tasks(include_semantics_original: bool, include_ci: bool) -> dict[
|
|
25 |
BinaryMapper, mapillary_classes, coco_classes)
|
26 |
tasks = [
|
27 |
rgb := RGB("rgb"),
|
28 |
-
OpticalFlowRepresentation("opticalflow_rife"),
|
29 |
DepthRepresentation("depth_marigold", min_depth=0, max_depth=1),
|
30 |
NormalsRepresentation("normals_svd(depth_marigold)")
|
31 |
]
|
|
|
13 |
[255, 0, 0], [0, 0, 255], [0, 255, 255], [127, 127, 63]]
|
14 |
classes_8 = ["land", "forest", "residential", "road", "little-objects", "water", "sky", "hill"]
|
15 |
tasks = [
|
16 |
+
SemanticRepresentation("semantic_output", classes=classes_8, color_map=color_map, disk_data_argmax=True),
|
17 |
DepthRepresentation("depth_output", min_depth=0, max_depth=300),
|
18 |
NormalsRepresentation("camera_normals_output"),
|
19 |
]
|
|
|
25 |
BinaryMapper, mapillary_classes, coco_classes)
|
26 |
tasks = [
|
27 |
rgb := RGB("rgb"),
|
28 |
+
# OpticalFlowRepresentation("opticalflow_rife"),
|
29 |
DepthRepresentation("depth_marigold", min_depth=0, max_depth=1),
|
30 |
NormalsRepresentation("normals_svd(depth_marigold)")
|
31 |
]
|
scripts/dronescapes_viewer/dronescapes_viewer.ipynb
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
scripts/m2f_metrics_analysis/m2f_main.ipynb
CHANGED
@@ -111,9 +111,9 @@
|
|
111 |
"os.environ[\"VRE_DEVICE\"] = device = \"cuda\" #\"cpu\"\n",
|
112 |
"os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"7\"\n",
|
113 |
"\n",
|
114 |
-
"m2f_1 = Mask2Former(model_id,
|
115 |
-
"m2f_2 = Mask2Former(\"47429163_0\",
|
116 |
-
"m2f_3 = Mask2Former(\"49189528_1\",
|
117 |
"\n",
|
118 |
"m2f_1.device = \"cuda\" if tr.cuda.is_available() else \"cpu\"\n",
|
119 |
"m2f_2.device = \"cuda\" if tr.cuda.is_available() else \"cpu\"\n",
|
|
|
111 |
"os.environ[\"VRE_DEVICE\"] = device = \"cuda\" #\"cpu\"\n",
|
112 |
"os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"7\"\n",
|
113 |
"\n",
|
114 |
+
"m2f_1 = Mask2Former(model_id, disk_data_argmax=False, name=\"m2f\", dependencies=[])\n",
|
115 |
+
"m2f_2 = Mask2Former(\"47429163_0\", disk_data_argmax=False, name=\"m2f\", dependencies=[])\n",
|
116 |
+
"m2f_3 = Mask2Former(\"49189528_1\", disk_data_argmax=False, name=\"m2f\", dependencies=[])\n",
|
117 |
"\n",
|
118 |
"m2f_1.device = \"cuda\" if tr.cuda.is_available() else \"cpu\"\n",
|
119 |
"m2f_2.device = \"cuda\" if tr.cuda.is_available() else \"cpu\"\n",
|
scripts/semantic_mapper/semantic_mapper.py
CHANGED
@@ -97,11 +97,11 @@ mapillary_color_map = [[165, 42, 42], [0, 192, 0], [196, 196, 196], [190, 153, 1
|
|
97 |
[0, 0, 70], [0, 0, 192], [32, 32, 32], [120, 10, 10]]
|
98 |
|
99 |
m2f_coco = SemanticRepresentation("semantic_mask2former_coco_47429163_0", classes=coco_classes,
|
100 |
-
color_map=coco_color_map)
|
101 |
m2f_mapillary = SemanticRepresentation("semantic_mask2former_mapillary_49189528_0", classes=mapillary_classes,
|
102 |
-
color_map=mapillary_color_map)
|
103 |
m2f_r50_mapillary = SemanticRepresentation("semantic_mask2former_mapillary_49189528_1", classes=mapillary_classes,
|
104 |
-
color_map=mapillary_color_map)
|
105 |
marigold = DepthRepresentation("depth_marigold", min_depth=0, max_depth=1)
|
106 |
normals_svd_marigold = NormalsRepresentation("normals_svd(depth_marigold)")
|
107 |
|
@@ -310,7 +310,7 @@ class SemanticMedian(TaskMapper, NpIORepresentation):
|
|
310 |
|
311 |
@overrides
|
312 |
def make_images(self, data: ReprOut) -> np.ndarray:
|
313 |
-
data_output = data.output.argmax(-1) if np.issubdtype(data.output.dtype, np.floating) else data.output
|
314 |
return colorize_semantic_segmentation(data_output, self.classes, self.color_map)
|
315 |
|
316 |
class SafeLandingAreas(BinaryMapper, NpIORepresentation):
|
|
|
97 |
[0, 0, 70], [0, 0, 192], [32, 32, 32], [120, 10, 10]]
|
98 |
|
99 |
m2f_coco = SemanticRepresentation("semantic_mask2former_coco_47429163_0", classes=coco_classes,
|
100 |
+
color_map=coco_color_map, disk_data_argmax=True)
|
101 |
m2f_mapillary = SemanticRepresentation("semantic_mask2former_mapillary_49189528_0", classes=mapillary_classes,
|
102 |
+
color_map=mapillary_color_map, disk_data_argmax=True)
|
103 |
m2f_r50_mapillary = SemanticRepresentation("semantic_mask2former_mapillary_49189528_1", classes=mapillary_classes,
|
104 |
+
color_map=mapillary_color_map, disk_data_argmax=True)
|
105 |
marigold = DepthRepresentation("depth_marigold", min_depth=0, max_depth=1)
|
106 |
normals_svd_marigold = NormalsRepresentation("normals_svd(depth_marigold)")
|
107 |
|
|
|
310 |
|
311 |
@overrides
|
312 |
def make_images(self, data: ReprOut) -> np.ndarray:
|
313 |
+
data_output = data.output.argmax(-1)# if np.issubdtype(data.output.dtype, np.floating) else data.output
|
314 |
return colorize_semantic_segmentation(data_output, self.classes, self.color_map)
|
315 |
|
316 |
class SafeLandingAreas(BinaryMapper, NpIORepresentation):
|
vre_dronescapes/cfg.yaml
CHANGED
@@ -30,7 +30,7 @@ representations:
|
|
30 |
dependencies: []
|
31 |
parameters:
|
32 |
model_id: "47429163_0"
|
33 |
-
|
34 |
compute_parameters:
|
35 |
batch_size: 1
|
36 |
|
@@ -39,7 +39,7 @@ representations:
|
|
39 |
dependencies: []
|
40 |
parameters:
|
41 |
model_id: "49189528_0"
|
42 |
-
|
43 |
compute_parameters:
|
44 |
batch_size: 1
|
45 |
|
@@ -48,7 +48,7 @@ representations:
|
|
48 |
dependencies: []
|
49 |
parameters:
|
50 |
model_id: "49189528_1"
|
51 |
-
|
52 |
compute_parameters:
|
53 |
batch_size: 1
|
54 |
|
|
|
30 |
dependencies: []
|
31 |
parameters:
|
32 |
model_id: "47429163_0"
|
33 |
+
disk_data_argmax: True
|
34 |
compute_parameters:
|
35 |
batch_size: 1
|
36 |
|
|
|
39 |
dependencies: []
|
40 |
parameters:
|
41 |
model_id: "49189528_0"
|
42 |
+
disk_data_argmax: True
|
43 |
compute_parameters:
|
44 |
batch_size: 1
|
45 |
|
|
|
48 |
dependencies: []
|
49 |
parameters:
|
50 |
model_id: "49189528_1"
|
51 |
+
disk_data_argmax: True
|
52 |
compute_parameters:
|
53 |
batch_size: 1
|
54 |
|
vre_dronescapes/commands.txt
CHANGED
@@ -33,7 +33,7 @@ VRE_DEVICE=cuda CUDA_VISIBLE_DEVICES=7 vre ../raw_data/videos/olanesti_DJI_0416_
|
|
33 |
# new videos
|
34 |
|
35 |
tmux new -s norway2
|
36 |
-
VRE_DEVICE=cuda CUDA_VISIBLE_DEVICES=1 vre ../raw_data/videos/new_videos/
|
37 |
|
38 |
tmux new -s politehnica
|
39 |
VRE_DEVICE=cuda CUDA_VISIBLE_DEVICES=2 vre ../raw_data/videos/new_videos/politehnica_DJI_0741_a2_540p.mp4 -o politehnica_DJI_0741_a2_540p/ --config_path cfg.yaml --output_dir_exists_mode skip_computed --exception_mode skip_representation --n_threads_data_storer 4 -I ../scripts/semantic_mapper/semantic_mapper.py:get_new_semantic_mapped_tasks
|
@@ -69,8 +69,8 @@ python scripts/symlinks_from_txt_list.py vre_dronescapes/ --copy_files --txt_fil
|
|
69 |
|
70 |
# experts (make combined txt file of all new scenes + old data)
|
71 |
# in vre_dronescapes_dir
|
72 |
-
ls . | grep "
|
73 |
-
ls . | grep "
|
74 |
mkdir ../scripts/txt_files/experts # in root dir
|
75 |
cd ../scripts/txt_files/experts # move to txt files dir
|
76 |
cat ../annotated_and_segprop/train_files_11664.txt > train_set.txt
|
|
|
33 |
# new videos
|
34 |
|
35 |
tmux new -s norway2
|
36 |
+
VRE_DEVICE=cuda CUDA_VISIBLE_DEVICES=1 vre ../raw_data/videos/new_videos/norway_DJI_0708_540p.mp4 -o norway_DJI_0708_540p.mp4/ --config_path cfg.yaml --output_dir_exists_mode skip_computed --exception_mode skip_representation --n_threads_data_storer 4 -I ../scripts/semantic_mapper/semantic_mapper.py:get_new_semantic_mapped_tasks
|
37 |
|
38 |
tmux new -s politehnica
|
39 |
VRE_DEVICE=cuda CUDA_VISIBLE_DEVICES=2 vre ../raw_data/videos/new_videos/politehnica_DJI_0741_a2_540p.mp4 -o politehnica_DJI_0741_a2_540p/ --config_path cfg.yaml --output_dir_exists_mode skip_computed --exception_mode skip_representation --n_threads_data_storer 4 -I ../scripts/semantic_mapper/semantic_mapper.py:get_new_semantic_mapped_tasks
|
|
|
69 |
|
70 |
# experts (make combined txt file of all new scenes + old data)
|
71 |
# in vre_dronescapes_dir
|
72 |
+
ls . | grep "norway_DJI_0708_540p.mp4\|politehnica_DJI_0741_a2_540p\|ovaselu_DJI_0372_540p\|raciu_DJI_0418_540p\|sanfrancisco_youtube_1_540p\|paris_youtube_1_540p\|riodejaneiro_youtube_1_540p\|sheerness_youtube_1_540p" | while read line; do rm -f ../scripts/txt_files/experts/"$line".txt; ls -v $line/rgb/npz | while read line2; do stem=${line2:0:-4}; echo $line/$stem >> ../scripts/txt_files/experts/"$line".txt; done; done
|
73 |
+
ls . | grep "norway_DJI_0708_540p.mp4\|politehnica_DJI_0741_a2_540p\|ovaselu_DJI_0372_540p\|raciu_DJI_0418_540p\|sanfrancisco_youtube_1_540p\|paris_youtube_1_540p\|riodejaneiro_youtube_1_540p\|sheerness_youtube_1_540p" | while read line; do echo $line; cp -r $line/depth_marigold $line/depth_output; ../scripts/update_stastistics.py $line/depth_output/npz --statistics_file ../data/train_set/.task_statistics.npz --source_task depth_marigold --n_workers 32; cp -r $line/'normals_svd(depth_marigold)' $line/camera_normals_output; done
|
74 |
mkdir ../scripts/txt_files/experts # in root dir
|
75 |
cd ../scripts/txt_files/experts # move to txt files dir
|
76 |
cat ../annotated_and_segprop/train_files_11664.txt > train_set.txt
|