File size: 1,957 Bytes
da4573f
b71ee81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da4573f
b71ee81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
---
annotations_creators:
- expert-generated
language_creators:
- found
language:
- en
license:
- cc-by-4.0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- image-segmentation
task_ids:
- semantic-segmentation
pretty_name: mb-s5mars
---

# mb-s5mars

A segmentation dataset for planetary science applications.

## Dataset Metadata

* **License:** CC-BY-4.0 (Creative Commons Attribution 4.0 International)
* **Version:** 1.0
* **Date Published:** 2025-05-15
* **Cite As:** TBD

## Classes

This dataset contains the following classes:

- 0: Background
- 1: Bedrock
- 2: Hole
- 3: Ridge
- 4: Rock
- 5: Rover
- 6: Sand / Soil
- 7: Sky
- 8: Track

## Directory Structure

The dataset follows this structure:

```
dataset/
  ├── train/
  │   ├── images/  # Image files
  │   └── masks/   # Segmentation masks
  ├── val/
  │   ├── images/  # Image files
  │   └── masks/   # Segmentation masks
  ├── test/
  │   ├── images/  # Image files
  │   └── masks/   # Segmentation masks
```

## Statistics

- train: 4997 images
- val: 200 images
- test: 800 images
- partition_train_0.01x_partition: 49 images
- partition_train_0.02x_partition: 99 images
- partition_train_0.50x_partition: 2498 images
- partition_train_0.20x_partition: 999 images
- partition_train_0.05x_partition: 249 images
- partition_train_0.10x_partition: 499 images
- partition_train_0.25x_partition: 1249 images

## Usage

```python
from datasets import load_dataset

dataset = load_dataset("Mirali33/mb-s5mars")
```

## Format

Each example in the dataset has the following format:

```
{
  'image': Image(...),      # PIL image
  'mask': Image(...),       # PIL image of the segmentation mask
  'width': int,             # Width of the image
  'height': int,            # Height of the image
  'class_labels': [str,...] # List of class names present in the mask
}
```