Mohammadawad1 commited on
Commit
b987727
·
verified ·
1 Parent(s): c432518

Update common_voice_17_0.py

Browse files
Files changed (1) hide show
  1. common_voice_17_0.py +200 -200
common_voice_17_0.py CHANGED
@@ -1,200 +1,200 @@
1
- # coding=utf-8
2
- # Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- """ Common Voice Dataset"""
16
-
17
-
18
- import csv
19
- import os
20
- import json
21
-
22
- import datasets
23
- from datasets.utils.py_utils import size_str
24
- from tqdm import tqdm
25
-
26
- from .languages import LANGUAGES
27
- from .release_stats import STATS
28
-
29
-
30
- _CITATION = """\
31
- @inproceedings{commonvoice:2020,
32
- author = {Ardila, R. and Branson, M. and Davis, K. and Henretty, M. and Kohler, M. and Meyer, J. and Morais, R. and Saunders, L. and Tyers, F. M. and Weber, G.},
33
- title = {Common Voice: A Massively-Multilingual Speech Corpus},
34
- booktitle = {Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020)},
35
- pages = {4211--4215},
36
- year = 2020
37
- }
38
- """
39
-
40
- _HOMEPAGE = "https://commonvoice.mozilla.org/en/datasets"
41
-
42
- _LICENSE = "https://creativecommons.org/publicdomain/zero/1.0/"
43
-
44
- # TODO: change "streaming" to "main" after merge!
45
- _BASE_URL = "https://huggingface.co/datasets/Mohammadawad1/my-dataset-test-v2/resolve/main/"
46
-
47
- _AUDIO_URL = _BASE_URL + "audio/{lang}/{split}/{split}_audio.tar"
48
-
49
- _TRANSCRIPT_URL = _BASE_URL + "transcript/{lang}/{split}_metadata.csv"
50
-
51
- _N_SHARDS_URL = _BASE_URL + "n_shards.json"
52
-
53
-
54
- class CommonVoiceConfig(datasets.BuilderConfig):
55
- """BuilderConfig for CommonVoice."""
56
-
57
- def __init__(self, name, version, **kwargs):
58
- self.language = kwargs.pop("language", None)
59
- self.release_date = kwargs.pop("release_date", None)
60
- self.num_clips = kwargs.pop("num_clips", None)
61
- self.num_speakers = kwargs.pop("num_speakers", None)
62
- self.validated_hr = kwargs.pop("validated_hr", None)
63
- self.total_hr = kwargs.pop("total_hr", None)
64
- self.size_bytes = kwargs.pop("size_bytes", None)
65
- self.size_human = size_str(self.size_bytes)
66
- description = (
67
- f"Common Voice speech to text dataset in {self.language} released on {self.release_date}. "
68
- f"The dataset comprises {self.validated_hr} hours of validated transcribed speech data "
69
- f"out of {self.total_hr} hours in total from {self.num_speakers} speakers. "
70
- f"The dataset contains {self.num_clips} audio clips and has a size of {self.size_human}."
71
- )
72
- super(CommonVoiceConfig, self).__init__(
73
- name=name,
74
- version=datasets.Version(version),
75
- description=description,
76
- **kwargs,
77
- )
78
-
79
-
80
- class CommonVoice(datasets.GeneratorBasedBuilder):
81
- DEFAULT_WRITER_BATCH_SIZE = 1000
82
-
83
- BUILDER_CONFIGS = [
84
- CommonVoiceConfig(
85
- name=lang,
86
- version=STATS["version"],
87
- language=LANGUAGES[lang],
88
- release_date=STATS["date"],
89
- num_clips=lang_stats["clips"],
90
- num_speakers=lang_stats["users"],
91
- validated_hr=float(lang_stats["validHrs"]) if lang_stats["validHrs"] else None,
92
- total_hr=float(lang_stats["totalHrs"]) if lang_stats["totalHrs"] else None,
93
- size_bytes=int(lang_stats["size"]) if lang_stats["size"] else None,
94
- )
95
- for lang, lang_stats in STATS["locales"].items()
96
- ]
97
-
98
- def _info(self):
99
- total_languages = len(STATS["locales"])
100
- total_valid_hours = STATS["totalValidHrs"]
101
- description = (
102
- "Common Voice is Mozilla's initiative to help teach machines how real people speak. "
103
- f"The dataset currently consists of {total_valid_hours} validated hours of speech "
104
- f" in {total_languages} languages, but more voices and languages are always added."
105
- )
106
- features = datasets.Features(
107
- {
108
- "client_id": datasets.Value("string"),
109
- "path": datasets.Value("string"),
110
- "audio": datasets.features.Audio(sampling_rate=48_000),
111
- "sentence": datasets.Value("string"),
112
- "up_votes": datasets.Value("int64"),
113
- "down_votes": datasets.Value("int64"),
114
- "age": datasets.Value("string"),
115
- "gender": datasets.Value("string"),
116
- "accent": datasets.Value("string"),
117
- "locale": datasets.Value("string"),
118
- "segment": datasets.Value("string"),
119
- "variant": datasets.Value("string"),
120
- }
121
- )
122
-
123
- return datasets.DatasetInfo(
124
- description=description,
125
- features=features,
126
- supervised_keys=None,
127
- homepage=_HOMEPAGE,
128
- license=_LICENSE,
129
- citation=_CITATION,
130
- version=self.config.version,
131
- )
132
-
133
- def _split_generators(self, dl_manager):
134
- print("Using CommonVoice dataset script _split_generators()")
135
-
136
- lang = self.config.name
137
- n_shards_path = dl_manager.download_and_extract(_N_SHARDS_URL)
138
- with open(n_shards_path, encoding="utf-8") as f:
139
- n_shards = json.load(f)
140
-
141
- audio_urls = {}
142
- splits = ("train", "dev", "test")
143
- for split in splits:
144
- audio_urls[split] = [
145
- _AUDIO_URL.format(lang=lang, split=split, shard_idx=i) for i in range(n_shards[lang][split])
146
- ]
147
- archive_paths = dl_manager.download(audio_urls)
148
- local_extracted_archive_paths = dl_manager.extract(archive_paths) if not dl_manager.is_streaming else {}
149
-
150
- meta_urls = {split: _TRANSCRIPT_URL.format(lang=lang, split=split) for split in splits}
151
- meta_paths = dl_manager.download_and_extract(meta_urls)
152
-
153
- split_generators = []
154
- split_names = {
155
- "train": datasets.Split.TRAIN,
156
- "dev": datasets.Split.VALIDATION,
157
- "test": datasets.Split.TEST,
158
- }
159
- for split in splits:
160
- split_generators.append(
161
- datasets.SplitGenerator(
162
- name=split_names.get(split, split),
163
- gen_kwargs={
164
- "local_extracted_archive_paths": local_extracted_archive_paths.get(split),
165
- "archives": [dl_manager.iter_archive(path) for path in archive_paths.get(split)],
166
- "meta_path": meta_paths[split],
167
- },
168
- ),
169
- )
170
-
171
- return split_generators
172
-
173
- def _generate_examples(self, local_extracted_archive_paths, archives, meta_path):
174
- data_fields = list(self._info().features.keys())
175
- metadata = {}
176
- with open(meta_path, encoding="utf-8-sig") as f:
177
- reader = csv.DictReader(f, delimiter=",", quoting=csv.QUOTE_NONE)
178
- for row in tqdm(reader, desc="Reading metadata..."):
179
- if not row["path"].endswith(".wav"):
180
- row["path"] += ".wav"
181
- # accent -> accents in CV 8.0
182
- if "accents" in row:
183
- row["accent"] = row["accents"]
184
- del row["accents"]
185
- # if data is incomplete, fill with empty values
186
- for field in data_fields:
187
- if field not in row:
188
- row[field] = ""
189
- metadata[row["path"]] = row
190
-
191
- for i, audio_archive in enumerate(archives):
192
- for path, file in audio_archive:
193
- _, filename = os.path.split(path)
194
- if filename in metadata:
195
- result = dict(metadata[filename])
196
- # set the audio feature and the path to the extracted file
197
- path = os.path.join(local_extracted_archive_paths[i], path) if local_extracted_archive_paths else path
198
- result["audio"] = {"path": path, "bytes": file.read()}
199
- result["path"] = path
200
- yield path, result
 
1
+ # # coding=utf-8
2
+ # # Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
3
+ # #
4
+ # # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # # you may not use this file except in compliance with the License.
6
+ # # You may obtain a copy of the License at
7
+ # #
8
+ # # http://www.apache.org/licenses/LICENSE-2.0
9
+ # #
10
+ # # Unless required by applicable law or agreed to in writing, software
11
+ # # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # # See the License for the specific language governing permissions and
14
+ # # limitations under the License.
15
+ # """ Common Voice Dataset"""
16
+
17
+
18
+ # import csv
19
+ # import os
20
+ # import json
21
+
22
+ # import datasets
23
+ # from datasets.utils.py_utils import size_str
24
+ # from tqdm import tqdm
25
+
26
+ # from .languages import LANGUAGES
27
+ # from .release_stats import STATS
28
+
29
+
30
+ # _CITATION = """\
31
+ # @inproceedings{commonvoice:2020,
32
+ # author = {Ardila, R. and Branson, M. and Davis, K. and Henretty, M. and Kohler, M. and Meyer, J. and Morais, R. and Saunders, L. and Tyers, F. M. and Weber, G.},
33
+ # title = {Common Voice: A Massively-Multilingual Speech Corpus},
34
+ # booktitle = {Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020)},
35
+ # pages = {4211--4215},
36
+ # year = 2020
37
+ # }
38
+ # """
39
+
40
+ # _HOMEPAGE = "https://commonvoice.mozilla.org/en/datasets"
41
+
42
+ # _LICENSE = "https://creativecommons.org/publicdomain/zero/1.0/"
43
+
44
+ # # TODO: change "streaming" to "main" after merge!
45
+ # _BASE_URL = "https://huggingface.co/datasets/Mohammadawad1/my-dataset-test-v2/resolve/main/"
46
+
47
+ # _AUDIO_URL = _BASE_URL + "audio/{lang}/{split}/{split}_audio.tar"
48
+
49
+ # _TRANSCRIPT_URL = _BASE_URL + "transcript/{lang}/{split}_metadata.csv"
50
+
51
+ # _N_SHARDS_URL = _BASE_URL + "n_shards.json"
52
+
53
+
54
+ # class CommonVoiceConfig(datasets.BuilderConfig):
55
+ # """BuilderConfig for CommonVoice."""
56
+
57
+ # def __init__(self, name, version, **kwargs):
58
+ # self.language = kwargs.pop("language", None)
59
+ # self.release_date = kwargs.pop("release_date", None)
60
+ # self.num_clips = kwargs.pop("num_clips", None)
61
+ # self.num_speakers = kwargs.pop("num_speakers", None)
62
+ # self.validated_hr = kwargs.pop("validated_hr", None)
63
+ # self.total_hr = kwargs.pop("total_hr", None)
64
+ # self.size_bytes = kwargs.pop("size_bytes", None)
65
+ # self.size_human = size_str(self.size_bytes)
66
+ # description = (
67
+ # f"Common Voice speech to text dataset in {self.language} released on {self.release_date}. "
68
+ # f"The dataset comprises {self.validated_hr} hours of validated transcribed speech data "
69
+ # f"out of {self.total_hr} hours in total from {self.num_speakers} speakers. "
70
+ # f"The dataset contains {self.num_clips} audio clips and has a size of {self.size_human}."
71
+ # )
72
+ # super(CommonVoiceConfig, self).__init__(
73
+ # name=name,
74
+ # version=datasets.Version(version),
75
+ # description=description,
76
+ # **kwargs,
77
+ # )
78
+
79
+
80
+ # class CommonVoice(datasets.GeneratorBasedBuilder):
81
+ # DEFAULT_WRITER_BATCH_SIZE = 1000
82
+
83
+ # BUILDER_CONFIGS = [
84
+ # CommonVoiceConfig(
85
+ # name=lang,
86
+ # version=STATS["version"],
87
+ # language=LANGUAGES[lang],
88
+ # release_date=STATS["date"],
89
+ # num_clips=lang_stats["clips"],
90
+ # num_speakers=lang_stats["users"],
91
+ # validated_hr=float(lang_stats["validHrs"]) if lang_stats["validHrs"] else None,
92
+ # total_hr=float(lang_stats["totalHrs"]) if lang_stats["totalHrs"] else None,
93
+ # size_bytes=int(lang_stats["size"]) if lang_stats["size"] else None,
94
+ # )
95
+ # for lang, lang_stats in STATS["locales"].items()
96
+ # ]
97
+
98
+ # def _info(self):
99
+ # total_languages = len(STATS["locales"])
100
+ # total_valid_hours = STATS["totalValidHrs"]
101
+ # description = (
102
+ # "Common Voice is Mozilla's initiative to help teach machines how real people speak. "
103
+ # f"The dataset currently consists of {total_valid_hours} validated hours of speech "
104
+ # f" in {total_languages} languages, but more voices and languages are always added."
105
+ # )
106
+ # features = datasets.Features(
107
+ # {
108
+ # "client_id": datasets.Value("string"),
109
+ # "path": datasets.Value("string"),
110
+ # "audio": datasets.features.Audio(sampling_rate=48_000),
111
+ # "sentence": datasets.Value("string"),
112
+ # "up_votes": datasets.Value("int64"),
113
+ # "down_votes": datasets.Value("int64"),
114
+ # "age": datasets.Value("string"),
115
+ # "gender": datasets.Value("string"),
116
+ # "accent": datasets.Value("string"),
117
+ # "locale": datasets.Value("string"),
118
+ # "segment": datasets.Value("string"),
119
+ # "variant": datasets.Value("string"),
120
+ # }
121
+ # )
122
+
123
+ # return datasets.DatasetInfo(
124
+ # description=description,
125
+ # features=features,
126
+ # supervised_keys=None,
127
+ # homepage=_HOMEPAGE,
128
+ # license=_LICENSE,
129
+ # citation=_CITATION,
130
+ # version=self.config.version,
131
+ # )
132
+
133
+ # def _split_generators(self, dl_manager):
134
+ # print("Using CommonVoice dataset script _split_generators()")
135
+
136
+ # lang = self.config.name
137
+ # n_shards_path = dl_manager.download_and_extract(_N_SHARDS_URL)
138
+ # with open(n_shards_path, encoding="utf-8") as f:
139
+ # n_shards = json.load(f)
140
+
141
+ # audio_urls = {}
142
+ # splits = ("train", "dev", "test")
143
+ # for split in splits:
144
+ # audio_urls[split] = [
145
+ # _AUDIO_URL.format(lang=lang, split=split, shard_idx=i) for i in range(n_shards[lang][split])
146
+ # ]
147
+ # archive_paths = dl_manager.download(audio_urls)
148
+ # local_extracted_archive_paths = dl_manager.extract(archive_paths) if not dl_manager.is_streaming else {}
149
+
150
+ # meta_urls = {split: _TRANSCRIPT_URL.format(lang=lang, split=split) for split in splits}
151
+ # meta_paths = dl_manager.download_and_extract(meta_urls)
152
+
153
+ # split_generators = []
154
+ # split_names = {
155
+ # "train": datasets.Split.TRAIN,
156
+ # "dev": datasets.Split.VALIDATION,
157
+ # "test": datasets.Split.TEST,
158
+ # }
159
+ # for split in splits:
160
+ # split_generators.append(
161
+ # datasets.SplitGenerator(
162
+ # name=split_names.get(split, split),
163
+ # gen_kwargs={
164
+ # "local_extracted_archive_paths": local_extracted_archive_paths.get(split),
165
+ # "archives": [dl_manager.iter_archive(path) for path in archive_paths.get(split)],
166
+ # "meta_path": meta_paths[split],
167
+ # },
168
+ # ),
169
+ # )
170
+
171
+ # return split_generators
172
+
173
+ # def _generate_examples(self, local_extracted_archive_paths, archives, meta_path):
174
+ # data_fields = list(self._info().features.keys())
175
+ # metadata = {}
176
+ # with open(meta_path, encoding="utf-8-sig") as f:
177
+ # reader = csv.DictReader(f, delimiter=",", quoting=csv.QUOTE_NONE)
178
+ # for row in tqdm(reader, desc="Reading metadata..."):
179
+ # if not row["path"].endswith(".wav"):
180
+ # row["path"] += ".wav"
181
+ # # accent -> accents in CV 8.0
182
+ # if "accents" in row:
183
+ # row["accent"] = row["accents"]
184
+ # del row["accents"]
185
+ # # if data is incomplete, fill with empty values
186
+ # for field in data_fields:
187
+ # if field not in row:
188
+ # row[field] = ""
189
+ # metadata[row["path"]] = row
190
+
191
+ # for i, audio_archive in enumerate(archives):
192
+ # for path, file in audio_archive:
193
+ # _, filename = os.path.split(path)
194
+ # if filename in metadata:
195
+ # result = dict(metadata[filename])
196
+ # # set the audio feature and the path to the extracted file
197
+ # path = os.path.join(local_extracted_archive_paths[i], path) if local_extracted_archive_paths else path
198
+ # result["audio"] = {"path": path, "bytes": file.read()}
199
+ # result["path"] = path
200
+ # yield path, result