NamYeongCho commited on
Commit
443c61f
·
verified ·
1 Parent(s): 2de2a73

Upload entire local dataset folder

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitignore +16 -0
  2. .gitmodules +6 -0
  3. LICENSE +21 -0
  4. README.md +235 -0
  5. coco_classes.json +82 -0
  6. configs/deep_sort.yaml +10 -0
  7. configs/fastreid.yaml +3 -0
  8. configs/mask_rcnn.yaml +6 -0
  9. configs/mmdet.yaml +5 -0
  10. configs/yolov3.yaml +7 -0
  11. configs/yolov3_tiny.yaml +7 -0
  12. configs/yolov5l.yaml +9 -0
  13. configs/yolov5m.yaml +9 -0
  14. configs/yolov5n.yaml +9 -0
  15. configs/yolov5s.yaml +9 -0
  16. configs/yolov5x.yaml +9 -0
  17. deep_sort/README.md +3 -0
  18. deep_sort/__init__.py +19 -0
  19. deep_sort/deep/GETTING_STARTED.md +82 -0
  20. deep_sort/deep/__init__.py +0 -0
  21. deep_sort/deep/checkpoint/.gitkeep +0 -0
  22. deep_sort/deep/datasets.py +92 -0
  23. deep_sort/deep/evaluate.py +15 -0
  24. deep_sort/deep/feature_extractor.py +93 -0
  25. deep_sort/deep/model.py +105 -0
  26. deep_sort/deep/multi_train_utils/distributed_utils.py +67 -0
  27. deep_sort/deep/multi_train_utils/train_eval_utils.py +90 -0
  28. deep_sort/deep/resnet.py +173 -0
  29. deep_sort/deep/test.py +77 -0
  30. deep_sort/deep/train.jpg +3 -0
  31. deep_sort/deep/train.py +151 -0
  32. deep_sort/deep/train_multiGPU.py +189 -0
  33. deep_sort/deep_sort.py +121 -0
  34. deep_sort/sort/__init__.py +0 -0
  35. deep_sort/sort/detection.py +51 -0
  36. deep_sort/sort/iou_matching.py +81 -0
  37. deep_sort/sort/kalman_filter.py +231 -0
  38. deep_sort/sort/linear_assignment.py +192 -0
  39. deep_sort/sort/nn_matching.py +176 -0
  40. deep_sort/sort/preprocessing.py +73 -0
  41. deep_sort/sort/track.py +169 -0
  42. deep_sort/sort/tracker.py +138 -0
  43. deepsort.py +189 -0
  44. deepsort_new.py +229 -0
  45. demo/1.jpg +3 -0
  46. demo/2.jpg +3 -0
  47. demo/demo.gif +3 -0
  48. demo/demo2.gif +3 -0
  49. detector/MMDet/__init__.py +2 -0
  50. detector/MMDet/detector.py +52 -0
.gitignore ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Folders
2
+ __pycache__/
3
+ build/
4
+ *.egg-info
5
+ .idea/
6
+
7
+
8
+ # Files
9
+ *.weights
10
+ *.pth
11
+ *.pt
12
+ *.t7
13
+ *.mp4
14
+ *.avi
15
+ *.so
16
+ *.txt
.gitmodules ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ [submodule "thirdparty/fast-reid"]
2
+ path = thirdparty/fast-reid
3
+ url = https://github.com/JDAI-CV/fast-reid.git
4
+ [submodule "thirdparty/mmdetection"]
5
+ path = thirdparty/mmdetection
6
+ url = https://github.com/open-mmlab/mmdetection.git
LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2020 Ziqiang
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
README.md ADDED
@@ -0,0 +1,235 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Deep Sort with PyTorch
2
+
3
+ ![](demo/demo.gif)
4
+
5
+ ## Update(1-1-2020)
6
+ Changes
7
+ - fix bugs
8
+ - refactor code
9
+ - accerate detection by adding nms on gpu
10
+
11
+ ## Update(07-22)
12
+ Changes
13
+ - bug fix (Thanks @JieChen91 and @yingsen1 for bug reporting).
14
+ - using batch for feature extracting for each frame, which lead to a small speed up.
15
+ - code improvement.
16
+
17
+ Futher improvement direction
18
+ - Train detector on specific dataset rather than the official one.
19
+ - Retrain REID model on pedestrain dataset for better performance.
20
+ - Replace YOLOv3 detector with advanced ones.
21
+
22
+ ## Update(23-05-2024)
23
+
24
+ ### tracking
25
+
26
+ - Added resnet network to the appearance feature extraction network in the deep folder
27
+
28
+ - Fixed the NMS bug in the `preprocessing.py` and also fixed covariance calculation bug in the `kalmen_filter.py` in the sort folder
29
+
30
+ ### detecting
31
+
32
+ - Added YOLOv5 detector, aligned interface, and added YOLOv5 related yaml configuration files. Codes references this repo: [YOLOv5-v6.1](https://github.com/ultralytics/yolov5/tree/v6.1).
33
+
34
+ - The `train.py`, `val.py` and `detect.py` in the original YOLOv5 were deleted. This repo only need **yolov5x.pt**.
35
+
36
+ ### deepsort
37
+
38
+ - Added tracking target category, which can display both category and tracking ID simultaneously.
39
+
40
+ ## Update(28-05-2024)
41
+
42
+ ### segmentation
43
+
44
+ * Added Mask RCNN instance segmentation model. Codes references this repo: [mask_rcnn](https://github.com/WZMIAOMIAO/deep-learning-for-image-processing/tree/master/pytorch_object_detection/mask_rcnn). Visual result saved in `demo/demo2.gif`.
45
+ * Similar to YOLOv5, `train.py`, `validation.py` and `predict.py` were deleted. This repo only need **maskrcnn_resnet50_fpn_coco.pth**.
46
+
47
+ ### deepsort
48
+
49
+ - Added tracking target mask, which can display both category, tracking ID and target mask simultaneously.
50
+
51
+ ## latest Update(09-06-2024)
52
+
53
+ ### feature extraction network
54
+
55
+ * Using `nn.parallel.DistributedDataParallel` in PyTorch to support multiple GPUs training.
56
+ * Added [GETTING_STARTED.md](deep_sort/deep/GETTING_STARTED.md) for better using `train.py` and `train_multiGPU.py`.
57
+
58
+ Updated `README.md` for previously updated content(#Update(23-05-2024) and #Update(28-05-2024)).
59
+
60
+ **Any contributions to this repository is welcome!**
61
+
62
+
63
+ ## Introduction
64
+ This is an implement of MOT tracking algorithm deep sort. Deep sort is basicly the same with sort but added a CNN model to extract features in image of human part bounded by a detector. This CNN model is indeed a RE-ID model and the detector used in [PAPER](https://arxiv.org/abs/1703.07402) is FasterRCNN , and the original source code is [HERE](https://github.com/nwojke/deep_sort).
65
+ However in original code, the CNN model is implemented with tensorflow, which I'm not familier with. SO I re-implemented the CNN feature extraction model with PyTorch, and changed the CNN model a little bit. Also, I use **YOLOv3** to generate bboxes instead of FasterRCNN.
66
+
67
+ ## Dependencies
68
+ - python 3 **(python2 not sure)**
69
+ - numpy
70
+ - scipy
71
+ - opencv-python
72
+ - sklearn
73
+ - torch >= 1.9
74
+ - torchvision >= 0.13
75
+ - pillow
76
+ - vizer
77
+ - edict
78
+ - matplotlib
79
+ - pycocotools
80
+ - tqdm
81
+
82
+ ## Quick Start
83
+ 0. Check all dependencies installed
84
+ ```bash
85
+ pip install -r requirements.txt
86
+ ```
87
+ for user in china, you can specify pypi source to accelerate install like:
88
+ ```bash
89
+ pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
90
+ ```
91
+
92
+ 1. Clone this repository
93
+ ```bash
94
+ git clone [email protected]:ZQPei/deep_sort_pytorch.git
95
+ ```
96
+
97
+ 2. Download detector parameters
98
+ ```bash
99
+ # if you use YOLOv3 as detector in this repo
100
+ cd detector/YOLOv3/weight/
101
+ wget https://pjreddie.com/media/files/yolov3.weights
102
+ wget https://pjreddie.com/media/files/yolov3-tiny.weights
103
+ cd ../../../
104
+
105
+ # if you use YOLOv5 as detector in this repo
106
+ cd detector/YOLOv5
107
+ wget https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5s.pt
108
+ or
109
+ wget https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5m.pt
110
+ cd ../../
111
+
112
+ # if you use Mask RCNN as detector in this repo
113
+ cd detector/Mask_RCNN/save_weights
114
+ wget https://download.pytorch.org/models/maskrcnn_resnet50_fpn_coco-bf2d0c1e.pth
115
+ cd ../../../
116
+ ```
117
+
118
+ 3. Download deepsort feature extraction networks weight
119
+ ```bash
120
+ # if you use original model in PAPER
121
+ cd deep_sort/deep/checkpoint
122
+ # download ckpt.t7 from
123
+ https://drive.google.com/drive/folders/1xhG0kRH1EX5B9_Iz8gQJb7UNnn_riXi6 to this folder
124
+ cd ../../../
125
+
126
+ # if you use resnet18 in this repo
127
+ cd deep_sort/deep/checkpoint
128
+ wget https://download.pytorch.org/models/resnet18-5c106cde.pth
129
+ cd ../../../
130
+ ```
131
+
132
+ 4. **(Optional)** Compile nms module if you use YOLOv3 as detetor in this repo
133
+ ```bash
134
+ cd detector/YOLOv3/nms
135
+ sh build.sh
136
+ cd ../../..
137
+ ```
138
+
139
+ Notice:
140
+ If compiling failed, the simplist way is to **Upgrade your pytorch >= 1.1 and torchvision >= 0.3" and you can avoid the troublesome compiling problems which are most likely caused by either `gcc version too low` or `libraries missing`.
141
+
142
+ 5. **(Optional)** Prepare third party submodules
143
+
144
+ [fast-reid](https://github.com/JDAI-CV/fast-reid)
145
+
146
+ This library supports bagtricks, AGW and other mainstream ReID methods through providing an fast-reid adapter.
147
+
148
+ to prepare our bundled fast-reid, then follow instructions in its README to install it.
149
+
150
+ Please refer to `configs/fastreid.yaml` for a sample of using fast-reid. See [Model Zoo](https://github.com/JDAI-CV/fast-reid/blob/master/docs/MODEL_ZOO.md) for available methods and trained models.
151
+
152
+ [MMDetection](https://github.com/open-mmlab/mmdetection)
153
+
154
+ This library supports Faster R-CNN and other mainstream detection methods through providing an MMDetection adapter.
155
+
156
+ to prepare our bundled MMDetection, then follow instructions in its README to install it.
157
+
158
+ Please refer to `configs/mmdet.yaml` for a sample of using MMDetection. See [Model Zoo](https://github.com/open-mmlab/mmdetection/blob/master/docs/model_zoo.md) for available methods and trained models.
159
+
160
+ Run
161
+
162
+ ```
163
+ git submodule update --init --recursive
164
+ ```
165
+
166
+
167
+ 6. Run demo
168
+ ```bash
169
+ usage: deepsort.py [-h]
170
+ [--fastreid]
171
+ [--config_fastreid CONFIG_FASTREID]
172
+ [--mmdet]
173
+ [--config_mmdetection CONFIG_MMDETECTION]
174
+ [--config_detection CONFIG_DETECTION]
175
+ [--config_deepsort CONFIG_DEEPSORT] [--display]
176
+ [--frame_interval FRAME_INTERVAL]
177
+ [--display_width DISPLAY_WIDTH]
178
+ [--display_height DISPLAY_HEIGHT] [--save_path SAVE_PATH]
179
+ [--cpu] [--camera CAM]
180
+ VIDEO_PATH
181
+
182
+ # yolov3 + deepsort
183
+ python deepsort.py [VIDEO_PATH] --config_detection ./configs/yolov3.yaml
184
+
185
+ # yolov3_tiny + deepsort
186
+ python deepsort.py [VIDEO_PATH] --config_detection ./configs/yolov3_tiny.yaml
187
+
188
+ # yolov3 + deepsort on webcam
189
+ python3 deepsort.py /dev/video0 --camera 0
190
+
191
+ # yolov3_tiny + deepsort on webcam
192
+ python3 deepsort.py /dev/video0 --config_detection ./configs/yolov3_tiny.yaml --camera 0
193
+
194
+ # yolov5s + deepsort
195
+ python deepsort.py [VIDEO_PATH] --config_detection ./configs/yolov5s.yaml
196
+
197
+ # yolov5m + deepsort
198
+ python deepsort.py [VIDEO_PATH] --config_detection ./configs/yolov5m.yaml
199
+
200
+ # mask_rcnn + deepsort
201
+ python deepsort.py [VIDEO_PATH] --config_detection ./configs/mask_rcnn.yaml --segment
202
+
203
+ # fast-reid + deepsort
204
+ python deepsort.py [VIDEO_PATH] --fastreid [--config_fastreid ./configs/fastreid.yaml]
205
+
206
+ # MMDetection + deepsort
207
+ python deepsort.py [VIDEO_PATH] --mmdet [--config_mmdetection ./configs/mmdet.yaml]
208
+ ```
209
+ Use `--display` to enable display image per frame.
210
+ Results will be saved to `./output/results.avi` and `./output/results.txt`.
211
+
212
+ All files above can also be accessed from BaiduDisk!
213
+ linker:[BaiduDisk](https://pan.baidu.com/s/1YJ1iPpdFTlUyLFoonYvozg)
214
+ passwd:fbuw
215
+
216
+ ## Training the RE-ID model
217
+ Check [GETTING_STARTED.md](deep_sort/deep/GETTING_STARTED.md) to start training progress using standard benchmark or **customized dataset**.
218
+
219
+ ## Demo videos and images
220
+ [demo.avi](https://drive.google.com/drive/folders/1xhG0kRH1EX5B9_Iz8gQJb7UNnn_riXi6)
221
+ [demo2.avi](https://drive.google.com/drive/folders/1xhG0kRH1EX5B9_Iz8gQJb7UNnn_riXi6)
222
+
223
+ ![1.jpg](demo/1.jpg)
224
+ ![2.jpg](demo/2.jpg)
225
+
226
+
227
+ ## References
228
+ - paper: [Simple Online and Realtime Tracking with a Deep Association Metric](https://arxiv.org/abs/1703.07402)
229
+ - code: [nwojke/deep_sort](https://github.com/nwojke/deep_sort)
230
+ - paper: [YOLOv3: An Incremental Improvement](https://pjreddie.com/media/files/papers/YOLOv3.pdf)
231
+ - code: [Joseph Redmon/yolov3](https://pjreddie.com/darknet/yolo/)
232
+ - paper: [Mask R-CNN](https://arxiv.org/pdf/1703.06870)
233
+ - code: [WZMIAOMIAO/Mask R-CNN](https://github.com/WZMIAOMIAO/deep-learning-for-image-processing/tree/master/pytorch_object_detection/mask_rcnn)
234
+ - paper: [YOLOv5](https://github.com/ultralytics/yolov5)
235
+ - code: [ultralytics/yolov5](https://github.com/ultralytics/yolov5/tree/v6.1)
coco_classes.json ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "0": "person",
3
+ "1": "bicycle",
4
+ "10": "fire hydrant",
5
+ "11": "stop sign",
6
+ "12": "parking meter",
7
+ "13": "bench",
8
+ "14": "bird",
9
+ "15": "cat",
10
+ "16": "dog",
11
+ "17": "horse",
12
+ "18": "sheep",
13
+ "19": "cow",
14
+ "2": "car",
15
+ "20": "elephant",
16
+ "21": "bear",
17
+ "22": "zebra",
18
+ "23": "giraffe",
19
+ "24": "backpack",
20
+ "25": "umbrella",
21
+ "26": "handbag",
22
+ "27": "tie",
23
+ "28": "suitcase",
24
+ "29": "frisbee",
25
+ "3": "motorcycle",
26
+ "30": "skis",
27
+ "31": "snowboard",
28
+ "32": "sports ball",
29
+ "33": "kite",
30
+ "34": "baseball bat",
31
+ "35": "baseball glove",
32
+ "36": "skateboard",
33
+ "37": "surfboard",
34
+ "38": "tennis racket",
35
+ "39": "bottle",
36
+ "4": "airplane",
37
+ "40": "wine glass",
38
+ "41": "cup",
39
+ "42": "fork",
40
+ "43": "knife",
41
+ "44": "spoon",
42
+ "45": "bowl",
43
+ "46": "banana",
44
+ "47": "apple",
45
+ "48": "sandwich",
46
+ "49": "orange",
47
+ "5": "bus",
48
+ "50": "broccoli",
49
+ "51": "carrot",
50
+ "52": "hot dog",
51
+ "53": "pizza",
52
+ "54": "donut",
53
+ "55": "cake",
54
+ "56": "chair",
55
+ "57": "couch",
56
+ "58": "potted plant",
57
+ "59": "bed",
58
+ "6": "train",
59
+ "60": "dining table",
60
+ "61": "toilet",
61
+ "62": "tv",
62
+ "63": "laptop",
63
+ "64": "mouse",
64
+ "65": "remote",
65
+ "66": "keyboard",
66
+ "67": "cell phone",
67
+ "68": "microwave",
68
+ "69": "oven",
69
+ "7": "truck",
70
+ "70": "toaster",
71
+ "71": "sink",
72
+ "72": "refrigerator",
73
+ "73": "book",
74
+ "74": "clock",
75
+ "75": "vase",
76
+ "76": "scissors",
77
+ "77": "teddy bear",
78
+ "78": "hair drier",
79
+ "79": "toothbrush",
80
+ "8": "boat",
81
+ "9": "traffic light"
82
+ }
configs/deep_sort.yaml ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ DEEPSORT:
2
+ REID_CKPT: "./deep_sort/deep/checkpoint/ckpt.t7"
3
+ MAX_DIST: 0.2
4
+ MIN_CONFIDENCE: 0.5
5
+ NMS_MAX_OVERLAP: 0.5
6
+ MAX_IOU_DISTANCE: 0.7
7
+ MAX_AGE: 70
8
+ N_INIT: 3
9
+ NN_BUDGET: 100
10
+
configs/fastreid.yaml ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ FASTREID:
2
+ CFG: "thirdparty/fast-reid/configs/Market1501/bagtricks_R50.yml"
3
+ CHECKPOINT: "deep_sort/deep/checkpoint/market_bot_R50.pth"
configs/mask_rcnn.yaml ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ MASKRCNN:
2
+ LABEL: "./coco_classes.json"
3
+ WEIGHT: "./detector/Mask_RCNN/save_weights/maskrcnn_resnet50_fpn_coco.pth"
4
+
5
+ NUM_CLASSES: 90
6
+ BOX_THRESH: 0.5
configs/mmdet.yaml ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ MMDET:
2
+ CFG: "thirdparty/mmdetection/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py"
3
+ CHECKPOINT: "detector/MMDet/weight/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth"
4
+
5
+ SCORE_THRESH: 0.5
configs/yolov3.yaml ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ YOLOV3:
2
+ CFG: "./detector/YOLOv3/cfg/yolo_v3.cfg"
3
+ WEIGHT: "./detector/YOLOv3/weight/yolov3.weights"
4
+ CLASS_NAMES: "./detector/YOLOv3/cfg/coco.names"
5
+
6
+ SCORE_THRESH: 0.5
7
+ NMS_THRESH: 0.4
configs/yolov3_tiny.yaml ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ YOLOV3:
2
+ CFG: "./detector/YOLOv3/cfg/yolov3-tiny.cfg"
3
+ WEIGHT: "./detector/YOLOv3/weight/yolov3-tiny.weights"
4
+ CLASS_NAMES: "./detector/YOLOv3/cfg/coco.names"
5
+
6
+ SCORE_THRESH: 0.5
7
+ NMS_THRESH: 0.4
configs/yolov5l.yaml ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ YOLOV5:
2
+ CFG: "./detector/YOLOv5/models/yolov5l.yaml"
3
+ WEIGHT: "./detector/YOLOv5/yolov5l.pt"
4
+ DATA: './detector/YOLOv5/data/coco128.yaml'
5
+
6
+ IMGSZ: [640, 640]
7
+ SCORE_THRESH: 0.25
8
+ NMS_THRESH: 0.45
9
+ MAX_DET: 100
configs/yolov5m.yaml ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ YOLOV5:
2
+ CFG: "./detector/YOLOv5/models/yolov5m.yaml"
3
+ WEIGHT: "./detector/YOLOv5/yolov5m.pt"
4
+ DATA: './detector/YOLOv5/data/coco128.yaml'
5
+
6
+ IMGSZ: [640, 640]
7
+ SCORE_THRESH: 0.25
8
+ NMS_THRESH: 0.45
9
+ MAX_DET: 100
configs/yolov5n.yaml ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ YOLOV5:
2
+ CFG: "./detector/YOLOv5/models/yolov5n.yaml"
3
+ WEIGHT: "./detector/YOLOv5/yolov5n.pt"
4
+ DATA: './detector/YOLOv5/data/coco128.yaml'
5
+
6
+ IMGSZ: [640, 640]
7
+ SCORE_THRESH: 0.25
8
+ NMS_THRESH: 0.45
9
+ MAX_DET: 100
configs/yolov5s.yaml ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ YOLOV5:
2
+ CFG: "./detector/YOLOv5/models/yolov5s.yaml"
3
+ WEIGHT: "./detector/YOLOv5/yolov5s.pt"
4
+ DATA: './detector/YOLOv5/data/coco128.yaml'
5
+
6
+ IMGSZ: [640, 640]
7
+ SCORE_THRESH: 0.25
8
+ NMS_THRESH: 0.45
9
+ MAX_DET: 100
configs/yolov5x.yaml ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ YOLOV5:
2
+ CFG: "./detector/YOLOv5/models/yolov5x.yaml"
3
+ WEIGHT: "./detector/YOLOv5/yolov5x.pt"
4
+ DATA: './detector/YOLOv5/data/coco128.yaml'
5
+
6
+ IMGSZ: [640, 640]
7
+ SCORE_THRESH: 0.25
8
+ NMS_THRESH: 0.45
9
+ MAX_DET: 100
deep_sort/README.md ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ # Deep Sort
2
+
3
+ This is the implemention of deep sort with pytorch.
deep_sort/__init__.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .deep_sort import DeepSort
2
+
3
+ __all__ = ['DeepSort', 'build_tracker']
4
+
5
+
6
+ def build_tracker(cfg, use_cuda):
7
+ if cfg.USE_FASTREID:
8
+ return DeepSort(model_path=cfg.FASTREID.CHECKPOINT, model_config=cfg.FASTREID.CFG,
9
+ max_dist=cfg.DEEPSORT.MAX_DIST, min_confidence=cfg.DEEPSORT.MIN_CONFIDENCE,
10
+ nms_max_overlap=cfg.DEEPSORT.NMS_MAX_OVERLAP, max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE,
11
+ max_age=cfg.DEEPSORT.MAX_AGE, n_init=cfg.DEEPSORT.N_INIT, nn_budget=cfg.DEEPSORT.NN_BUDGET,
12
+ use_cuda=use_cuda)
13
+
14
+ else:
15
+ return DeepSort(model_path=cfg.DEEPSORT.REID_CKPT,
16
+ max_dist=cfg.DEEPSORT.MAX_DIST, min_confidence=cfg.DEEPSORT.MIN_CONFIDENCE,
17
+ nms_max_overlap=cfg.DEEPSORT.NMS_MAX_OVERLAP, max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE,
18
+ max_age=cfg.DEEPSORT.MAX_AGE, n_init=cfg.DEEPSORT.N_INIT, nn_budget=cfg.DEEPSORT.NN_BUDGET,
19
+ use_cuda=use_cuda)
deep_sort/deep/GETTING_STARTED.md ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ In deepsort algorithm, appearance feature extraction network used to extract features from **image_crops** for matching purpose.The original model used in paper is in `model.py`, and its parameter here [ckpt.t7](https://drive.google.com/drive/folders/1xhG0kRH1EX5B9_Iz8gQJb7UNnn_riXi6). This repository also provides a `resnet.py` script and its pre-training weights on Imagenet here.
2
+
3
+ ```
4
+ # resnet18
5
+ https://download.pytorch.org/models/resnet18-5c106cde.pth
6
+ # resnet34
7
+ https://download.pytorch.org/models/resnet34-333f7ec4.pth
8
+ # resnet50
9
+ https://download.pytorch.org/models/resnet50-19c8e357.pth
10
+ # resnext50_32x4d
11
+ https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth
12
+ ```
13
+
14
+ ## Dataset PrePare
15
+
16
+ To train the model, first you need download [Market1501](http://www.liangzheng.com.cn/Project/project_reid.html) dataset or [Mars](http://www.liangzheng.com.cn/Project/project_mars.html) dataset.
17
+
18
+ If you want to train on your **own dataset**, assuming you have already downloaded the dataset.The dataset should be arranged in the following way.
19
+
20
+ ```
21
+ ├── dataset_root: The root dir of the dataset.
22
+ ├── class1: Category 1 is located in the folder dir.
23
+ ├── xxx1.jpg: Image belonging to category 1.
24
+ ├── xxx2.jpg: Image belonging to category 1.
25
+ ├── class2: Category 2 is located in the folder dir.
26
+ ├── xxx3.jpg: Image belonging to category 2.
27
+ ├── xxx4.jpg: Image belonging to category 2.
28
+ ├── class3: Category 3 is located in the folder dir.
29
+ ...
30
+ ...
31
+ ```
32
+
33
+ ## Training the RE-ID model
34
+
35
+ Assuming you have already prepare the dataset. Then you can use the following command to start your training progress.
36
+
37
+ #### training on a single GPU
38
+
39
+ ```python
40
+ usage: train.py [--data-dir]
41
+ [--epochs]
42
+ [--batch_size]
43
+ [--lr]
44
+ [--lrf]
45
+ [--weights]
46
+ [--freeze-layers]
47
+ [--gpu_id]
48
+
49
+ # default use cuda:0, use Net in `model.py`
50
+ python train.py --data-dir [dataset/root/path] --weights [(optional)pre-train/weight/path]
51
+ # you can use `--freeze-layers` option to freeze full convolutional layer parameters except fc layers parameters
52
+ python train.py --data-dir [dataset/root/path] --weights [(optional)pre-train/weight/path] --freeze-layers
53
+ ```
54
+
55
+ #### training on multiple GPU
56
+
57
+ ```python
58
+ usage: train_multiGPU.py [--data-dir]
59
+ [--epochs]
60
+ [--batch_size]
61
+ [--lr]
62
+ [--lrf]
63
+ [--syncBN]
64
+ [--weights]
65
+ [--freeze-layers]
66
+ # not change the following parameters, the system will automatically assignment
67
+ [--device]
68
+ [--world_size]
69
+ [--dist_url]
70
+
71
+ # default use cuda:0, cuda:1, cuda:2, cuda:3, use resnet18 in `resnet.py`
72
+ CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun --nproc_per_node=4 train_multiGPU.py --data-dir [dataset/root/path] --weights [(optional)pre-train/weight/path]
73
+ # you can use `--freeze-layers` option to freeze full convolutional layer parameters except fc layers parameters
74
+ CUDA_VISIBLE_DEVICES=0,1,2,3 torchrun --nproc_per_node=4 train_multiGPU.py --data-dir [dataset/root/path] --weights [(optional)pre-train/weight/path] --freeze-layers
75
+ ```
76
+
77
+ An example of training progress is as follows:
78
+
79
+ ![train.jpg](./train.jpg)
80
+
81
+ The last, you can evaluate it using [test.py](deep_sort/deep/test.py) and [evaluate.py](deep_sort/deep/evalute.py).
82
+
deep_sort/deep/__init__.py ADDED
File without changes
deep_sort/deep/checkpoint/.gitkeep ADDED
File without changes
deep_sort/deep/datasets.py ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ import random
4
+
5
+ import cv2
6
+ from PIL import Image
7
+ import torch
8
+ from torch.utils.data import Dataset
9
+ import matplotlib.pyplot as plt
10
+
11
+
12
+ class ClsDataset(Dataset):
13
+ def __init__(self, images_path, images_labels, transform=None):
14
+ self.images_path = images_path
15
+ self.images_labels = images_labels
16
+ self.transform = transform
17
+
18
+ def __len__(self):
19
+ return len(self.images_path)
20
+
21
+ def __getitem__(self, idx):
22
+ img = cv2.imread(self.images_path[idx])
23
+ img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
24
+ img = Image.fromarray(img)
25
+ label = self.images_labels[idx]
26
+
27
+ if self.transform is not None:
28
+ img = self.transform(img)
29
+ return img, label
30
+
31
+ @staticmethod
32
+ def collate_fn(batch):
33
+ images, labels = tuple(zip(*batch))
34
+ images = torch.stack(images, dim=0)
35
+ labels = torch.as_tensor(labels)
36
+ return images, labels
37
+
38
+
39
+ def read_split_data(root, valid_rate=0.2):
40
+ assert os.path.exists(root), 'dataset root: {} does not exist.'.format(root)
41
+
42
+ class_names = [cls for cls in os.listdir(root) if os.path.isdir(os.path.join(root, cls))]
43
+ class_names.sort()
44
+
45
+ class_indices = {name: i for i, name in enumerate(class_names)}
46
+ json_str = json.dumps({v: k for k, v in class_indices.items()}, indent=4)
47
+ with open('class_indices.json', 'w') as f:
48
+ f.write(json_str)
49
+
50
+ train_images_path = []
51
+ train_labels = []
52
+ val_images_path = []
53
+ val_labels = []
54
+ per_class_num = []
55
+
56
+ supported = ['.jpg', '.JPG', '.png', '.PNG']
57
+ for cls in class_names:
58
+ cls_path = os.path.join(root, cls)
59
+ images_path = [os.path.join(cls_path, i) for i in os.listdir(cls_path)
60
+ if os.path.splitext(i)[-1] in supported]
61
+ images_label = class_indices[cls]
62
+ per_class_num.append(len(images_path))
63
+
64
+ val_path = random.sample(images_path, int(len(images_path) * valid_rate))
65
+ for img_path in images_path:
66
+ if img_path in val_path:
67
+ val_images_path.append(img_path)
68
+ val_labels.append(images_label)
69
+ else:
70
+ train_images_path.append(img_path)
71
+ train_labels.append(images_label)
72
+
73
+ print("{} images were found in the dataset.".format(sum(per_class_num)))
74
+ print("{} images for training.".format(len(train_images_path)))
75
+ print("{} images for validation.".format(len(val_images_path)))
76
+
77
+ assert len(train_images_path) > 0, "number of training images must greater than zero"
78
+ assert len(val_images_path) > 0, "number of validation images must greater than zero"
79
+
80
+ plot_distribution = False
81
+ if plot_distribution:
82
+ plt.bar(range(len(class_names)), per_class_num, align='center')
83
+ plt.xticks(range(len(class_names)), class_names)
84
+
85
+ for i, v in enumerate(per_class_num):
86
+ plt.text(x=i, y=v + 5, s=str(v), ha='center')
87
+
88
+ plt.xlabel('classes')
89
+ plt.ylabel('numbers')
90
+ plt.title('the distribution of dataset')
91
+ plt.show()
92
+ return [train_images_path, train_labels], [val_images_path, val_labels], len(class_names)
deep_sort/deep/evaluate.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+ features = torch.load("features.pth")
4
+ qf = features["qf"]
5
+ ql = features["ql"]
6
+ gf = features["gf"]
7
+ gl = features["gl"]
8
+
9
+ scores = qf.mm(gf.t())
10
+ res = scores.topk(5, dim=1)[1][:,0]
11
+ top1correct = gl[res].eq(ql).sum().item()
12
+
13
+ print("Acc top1:{:.3f}".format(top1correct/ql.size(0)))
14
+
15
+
deep_sort/deep/feature_extractor.py ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torchvision.transforms as transforms
3
+ import numpy as np
4
+ import cv2
5
+ import logging
6
+
7
+ from .model import Net
8
+ from .resnet import resnet18
9
+ # from fastreid.config import get_cfg
10
+ # from fastreid.engine import DefaultTrainer
11
+ # from fastreid.utils.checkpoint import Checkpointer
12
+
13
+
14
+ class Extractor(object):
15
+ def __init__(self, model_path, use_cuda=True):
16
+ self.net = Net(reid=True)
17
+ # self.net = resnet18(reid=True)
18
+ self.device = "cuda" if torch.cuda.is_available() and use_cuda else "cpu"
19
+ state_dict = torch.load(model_path, map_location=lambda storage, loc: storage)
20
+ self.net.load_state_dict(state_dict if 'net_dict' not in state_dict else state_dict['net_dict'], strict=False)
21
+ logger = logging.getLogger("root.tracker")
22
+ logger.info("Loading weights from {}... Done!".format(model_path))
23
+ self.net.to(self.device)
24
+ self.size = (64, 128)
25
+ self.norm = transforms.Compose([
26
+ transforms.ToTensor(),
27
+ transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
28
+ ])
29
+
30
+ def _preprocess(self, im_crops):
31
+ """
32
+ TODO:
33
+ 1. to float with scale from 0 to 1
34
+ 2. resize to (64, 128) as Market1501 dataset did
35
+ 3. concatenate to a numpy array
36
+ 3. to torch Tensor
37
+ 4. normalize
38
+ """
39
+
40
+ def _resize(im, size):
41
+ return cv2.resize(im.astype(np.float32) / 255., size)
42
+
43
+ im_batch = torch.cat([self.norm(_resize(im, self.size)).unsqueeze(0) for im in im_crops], dim=0).float()
44
+ return im_batch
45
+
46
+ def __call__(self, im_crops):
47
+ im_batch = self._preprocess(im_crops)
48
+ with torch.no_grad():
49
+ im_batch = im_batch.to(self.device)
50
+ features = self.net(im_batch)
51
+ return features.cpu().numpy()
52
+
53
+
54
+ class FastReIDExtractor(object):
55
+ def __init__(self, model_config, model_path, use_cuda=True):
56
+ cfg = get_cfg()
57
+ cfg.merge_from_file(model_config)
58
+ cfg.MODEL.BACKBONE.PRETRAIN = False
59
+ self.net = DefaultTrainer.build_model(cfg)
60
+ self.device = "cuda" if torch.cuda.is_available() and use_cuda else "cpu"
61
+
62
+ Checkpointer(self.net).load(model_path)
63
+ logger = logging.getLogger("root.tracker")
64
+ logger.info("Loading weights from {}... Done!".format(model_path))
65
+ self.net.to(self.device)
66
+ self.net.eval()
67
+ height, width = cfg.INPUT.SIZE_TEST
68
+ self.size = (width, height)
69
+ self.norm = transforms.Compose([
70
+ transforms.ToTensor(),
71
+ transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
72
+ ])
73
+
74
+ def _preprocess(self, im_crops):
75
+ def _resize(im, size):
76
+ return cv2.resize(im.astype(np.float32) / 255., size)
77
+
78
+ im_batch = torch.cat([self.norm(_resize(im, self.size)).unsqueeze(0) for im in im_crops], dim=0).float()
79
+ return im_batch
80
+
81
+ def __call__(self, im_crops):
82
+ im_batch = self._preprocess(im_crops)
83
+ with torch.no_grad():
84
+ im_batch = im_batch.to(self.device)
85
+ features = self.net(im_batch)
86
+ return features.cpu().numpy()
87
+
88
+
89
+ if __name__ == '__main__':
90
+ img = cv2.imread("demo.jpg")[:, :, (2, 1, 0)]
91
+ extr = Extractor("checkpoint/ckpt.t7")
92
+ feature = extr(img)
93
+ print(feature.shape)
deep_sort/deep/model.py ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+
5
+
6
+ class BasicBlock(nn.Module):
7
+ def __init__(self, c_in, c_out, is_downsample=False):
8
+ super(BasicBlock, self).__init__()
9
+ self.is_downsample = is_downsample
10
+ if is_downsample:
11
+ self.conv1 = nn.Conv2d(c_in, c_out, 3, stride=2, padding=1, bias=False)
12
+ else:
13
+ self.conv1 = nn.Conv2d(c_in, c_out, 3, stride=1, padding=1, bias=False)
14
+ self.bn1 = nn.BatchNorm2d(c_out)
15
+ self.relu = nn.ReLU(True)
16
+ self.conv2 = nn.Conv2d(c_out, c_out, 3, stride=1, padding=1, bias=False)
17
+ self.bn2 = nn.BatchNorm2d(c_out)
18
+ if is_downsample:
19
+ self.downsample = nn.Sequential(
20
+ nn.Conv2d(c_in, c_out, 1, stride=2, bias=False),
21
+ nn.BatchNorm2d(c_out)
22
+ )
23
+ elif c_in != c_out:
24
+ self.downsample = nn.Sequential(
25
+ nn.Conv2d(c_in, c_out, 1, stride=1, bias=False),
26
+ nn.BatchNorm2d(c_out)
27
+ )
28
+ self.is_downsample = True
29
+
30
+ def forward(self, x):
31
+ y = self.conv1(x)
32
+ y = self.bn1(y)
33
+ y = self.relu(y)
34
+ y = self.conv2(y)
35
+ y = self.bn2(y)
36
+ if self.is_downsample:
37
+ x = self.downsample(x)
38
+ return F.relu(x.add(y), True)
39
+
40
+
41
+ def make_layers(c_in, c_out, repeat_times, is_downsample=False):
42
+ blocks = []
43
+ for i in range(repeat_times):
44
+ if i == 0:
45
+ blocks += [BasicBlock(c_in, c_out, is_downsample=is_downsample), ]
46
+ else:
47
+ blocks += [BasicBlock(c_out, c_out), ]
48
+ return nn.Sequential(*blocks)
49
+
50
+
51
+ class Net(nn.Module):
52
+ def __init__(self, num_classes=751, reid=False):
53
+ super(Net, self).__init__()
54
+ # 3 128 64
55
+ self.conv = nn.Sequential(
56
+ nn.Conv2d(3, 64, 3, stride=1, padding=1),
57
+ nn.BatchNorm2d(64),
58
+ nn.ReLU(inplace=True),
59
+ # nn.Conv2d(32,32,3,stride=1,padding=1),
60
+ # nn.BatchNorm2d(32),
61
+ # nn.ReLU(inplace=True),
62
+ nn.MaxPool2d(3, 2, padding=1),
63
+ )
64
+ # 32 64 32
65
+ self.layer1 = make_layers(64, 64, 2, False)
66
+ # 32 64 32
67
+ self.layer2 = make_layers(64, 128, 2, True)
68
+ # 64 32 16
69
+ self.layer3 = make_layers(128, 256, 2, True)
70
+ # 128 16 8
71
+ self.layer4 = make_layers(256, 512, 2, True)
72
+ # 256 8 4
73
+ self.avgpool = nn.AdaptiveAvgPool2d(1)
74
+ # 256 1 1
75
+ self.reid = reid
76
+ self.classifier = nn.Sequential(
77
+ nn.Linear(512, 256),
78
+ nn.BatchNorm1d(256),
79
+ nn.ReLU(inplace=True),
80
+ nn.Dropout(),
81
+ nn.Linear(256, num_classes),
82
+ )
83
+
84
+ def forward(self, x):
85
+ x = self.conv(x)
86
+ x = self.layer1(x)
87
+ x = self.layer2(x)
88
+ x = self.layer3(x)
89
+ x = self.layer4(x)
90
+ x = self.avgpool(x)
91
+ x = x.view(x.size(0), -1)
92
+ # B x 128
93
+ if self.reid:
94
+ x = x.div(x.norm(p=2, dim=1, keepdim=True))
95
+ return x
96
+ # classifier
97
+ x = self.classifier(x)
98
+ return x
99
+
100
+
101
+ if __name__ == '__main__':
102
+ net = Net()
103
+ x = torch.randn(4, 3, 128, 64)
104
+ y = net(x)
105
+
deep_sort/deep/multi_train_utils/distributed_utils.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ import torch
4
+ import torch.distributed as dist
5
+
6
+
7
+ def init_distributed_mode(args):
8
+ if 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
9
+ args.rank = int(os.environ['RANK'])
10
+ args.world_size = int(os.environ['WORLD_SIZE'])
11
+ args.gpu = int(os.environ['LOCAL_RANK'])
12
+ elif 'SLURM_PROCID' in os.environ:
13
+ args.rank = int(os.environ['SLURM_PROCID'])
14
+ args.gpu = args.rank % torch.cuda.device_count()
15
+ else:
16
+ print("Not using distributed mode")
17
+ args.distributed = False
18
+ return
19
+
20
+ args.distributed = True
21
+
22
+ torch.cuda.set_device(args.gpu)
23
+ args.dist_backend = 'nccl'
24
+ print('| distributed init (rank {}): {}'.format(args.rank, args.dist_url), flush=True)
25
+ dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
26
+ world_size=args.world_size, rank=args.rank)
27
+ dist.barrier()
28
+
29
+
30
+ def cleanup():
31
+ dist.destroy_process_group()
32
+
33
+
34
+ def is_dist_avail_and_initialized():
35
+ if not dist.is_available():
36
+ return False
37
+ if not dist.is_initialized():
38
+ return False
39
+ return True
40
+
41
+
42
+ def get_world_size():
43
+ if not is_dist_avail_and_initialized():
44
+ return 1
45
+ return dist.get_world_size()
46
+
47
+
48
+ def get_rank():
49
+ if not is_dist_avail_and_initialized():
50
+ return 0
51
+ return dist.get_rank()
52
+
53
+
54
+ def is_main_process():
55
+ return get_rank() == 0
56
+
57
+
58
+ def reduce_value(value, average=True):
59
+ world_size = get_world_size()
60
+ if world_size < 2:
61
+ return value
62
+ with torch.no_grad():
63
+ dist.all_reduce(value)
64
+ if average:
65
+ value /= world_size
66
+
67
+ return value
deep_sort/deep/multi_train_utils/train_eval_utils.py ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sys
2
+
3
+ from tqdm import tqdm
4
+ import torch
5
+
6
+ from .distributed_utils import reduce_value, is_main_process
7
+
8
+
9
+ def load_model(state_dict, model_state_dict, model):
10
+ for k in state_dict:
11
+ if k in model_state_dict:
12
+ if state_dict[k].shape != model_state_dict[k].shape:
13
+ print('Skip loading parameter {}, required shape {}, ' \
14
+ 'loaded shape {}.'.format(
15
+ k, model_state_dict[k].shape, state_dict[k].shape))
16
+ state_dict[k] = model_state_dict[k]
17
+ else:
18
+ print('Drop parameter {}.'.format(k))
19
+ for k in model_state_dict:
20
+ if not (k in state_dict):
21
+ print('No param {}.'.format(k))
22
+ state_dict[k] = model_state_dict[k]
23
+ model.load_state_dict(state_dict, strict=False)
24
+ return model
25
+
26
+
27
+ def train_one_epoch(model, optimizer, data_loader, device, epoch):
28
+ model.train()
29
+ criterion = torch.nn.CrossEntropyLoss()
30
+ mean_loss = torch.zeros(1).to(device)
31
+ sum_num = torch.zeros(1).to(device)
32
+ optimizer.zero_grad()
33
+
34
+ if is_main_process():
35
+ data_loader = tqdm(data_loader, file=sys.stdout)
36
+
37
+ for idx, (images, labels) in enumerate(data_loader):
38
+ # forward
39
+ images, labels = images.to(device), labels.to(device)
40
+ outputs = model(images)
41
+ loss = criterion(outputs, labels)
42
+
43
+ # backward
44
+ loss.backward()
45
+ loss = reduce_value(loss, average=True)
46
+ mean_loss = (mean_loss * idx + loss.detach()) / (idx + 1)
47
+ pred = torch.max(outputs, dim=1)[1]
48
+ sum_num += torch.eq(pred, labels).sum()
49
+
50
+ if is_main_process():
51
+ data_loader.desc = '[epoch {}] mean loss {}'.format(epoch, mean_loss.item())
52
+
53
+ if not torch.isfinite(loss):
54
+ print('loss is infinite, ending training')
55
+ sys.exit(1)
56
+
57
+ optimizer.step()
58
+ optimizer.zero_grad()
59
+ if device != torch.device('cpu'):
60
+ torch.cuda.synchronize(device)
61
+ sum_num = reduce_value(sum_num, average=False)
62
+
63
+ return sum_num.item(), mean_loss.item()
64
+
65
+
66
+ @torch.no_grad()
67
+ def evaluate(model, data_loader, device):
68
+ model.eval()
69
+ criterion = torch.nn.CrossEntropyLoss()
70
+ test_loss = torch.zeros(1).to(device)
71
+ sum_num = torch.zeros(1).to(device)
72
+ if is_main_process():
73
+ data_loader = tqdm(data_loader, file=sys.stdout)
74
+
75
+ for idx, (inputs, labels) in enumerate(data_loader):
76
+ inputs, labels = inputs.to(device), labels.to(device)
77
+ outputs = model(inputs)
78
+ loss = criterion(outputs, labels)
79
+ loss = reduce_value(loss, average=True)
80
+
81
+ test_loss = (test_loss * idx + loss.detach()) / (idx + 1)
82
+ pred = torch.max(outputs, dim=1)[1]
83
+ sum_num += torch.eq(pred, labels).sum()
84
+
85
+ if device != torch.device('cpu'):
86
+ torch.cuda.synchronize(device)
87
+
88
+ sum_num = reduce_value(sum_num, average=False)
89
+
90
+ return sum_num.item(), test_loss.item()
deep_sort/deep/resnet.py ADDED
@@ -0,0 +1,173 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+ import torch
3
+
4
+
5
+ class BasicBlock(nn.Module):
6
+ expansion = 1
7
+
8
+ def __init__(self, in_channel, out_channel, stride=1, downsample=None, **kwargs):
9
+ super(BasicBlock, self).__init__()
10
+ self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=out_channel, kernel_size=3,
11
+ stride=stride, padding=1, bias=False)
12
+ self.bn1 = nn.BatchNorm2d(out_channel)
13
+ self.relu = nn.ReLU()
14
+ self.conv2 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel, kernel_size=3,
15
+ stride=1, padding=1, bias=False)
16
+ self.bn2 = nn.BatchNorm2d(out_channel)
17
+ self.downsample = downsample
18
+
19
+ def forward(self, x):
20
+ identity = x
21
+ if self.downsample is not None:
22
+ identity = self.downsample(x)
23
+
24
+ out = self.conv1(x)
25
+ out = self.bn1(out)
26
+ out = self.relu(out)
27
+
28
+ out = self.conv2(out)
29
+ out = self.bn2(out)
30
+
31
+ out += identity
32
+ out = self.relu(out)
33
+ return out
34
+
35
+
36
+ class Bottleneck(nn.Module):
37
+ expansion = 4
38
+
39
+ def __init__(self, in_channel, out_channel, stride=1, downsample=None,
40
+ groups=1, width_per_group=64):
41
+ super(Bottleneck, self).__init__()
42
+ width = int(out_channel * (width_per_group / 64.)) * groups
43
+
44
+ self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=width, kernel_size=1,
45
+ stride=1, bias=False)
46
+ self.bn1 = nn.BatchNorm2d(width)
47
+ self.conv2 = nn.Conv2d(in_channels=width, out_channels=width, kernel_size=3,
48
+ stride=stride, padding=1, bias=False, groups=groups)
49
+ self.bn2 = nn.BatchNorm2d(width)
50
+ self.conv3 = nn.Conv2d(in_channels=width, out_channels=out_channel * self.expansion,
51
+ kernel_size=1, stride=1, bias=False)
52
+ self.bn3 = nn.BatchNorm2d(out_channel * self.expansion)
53
+ self.relu = nn.ReLU(inplace=True)
54
+ self.downsample = downsample
55
+
56
+ def forward(self, x):
57
+ identity = x
58
+ if self.downsample is not None:
59
+ identity = self.downsample(x)
60
+
61
+ out = self.conv1(x)
62
+ out = self.bn1(out)
63
+ out = self.relu(out)
64
+
65
+ out = self.conv2(out)
66
+ out = self.bn2(out)
67
+ out = self.relu(out)
68
+
69
+ out = self.conv3(out)
70
+ out = self.bn3(out)
71
+
72
+ out += identity
73
+ out = self.relu(out)
74
+
75
+ return out
76
+
77
+
78
+ class ResNet(nn.Module):
79
+
80
+ def __init__(self, block, blocks_num, reid=False, num_classes=1000, groups=1, width_per_group=64):
81
+ super(ResNet, self).__init__()
82
+ self.reid = reid
83
+ self.in_channel = 64
84
+
85
+ self.groups = groups
86
+ self.width_per_group = width_per_group
87
+
88
+ self.conv1 = nn.Conv2d(3, self.in_channel, kernel_size=7, stride=2,
89
+ padding=3, bias=False)
90
+ self.bn1 = nn.BatchNorm2d(self.in_channel)
91
+ self.relu = nn.ReLU(inplace=True)
92
+ self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
93
+ self.layer1 = self._make_layers(block, 64, blocks_num[0])
94
+ self.layer2 = self._make_layers(block, 128, blocks_num[1], stride=2)
95
+ self.layer3 = self._make_layers(block, 256, blocks_num[2], stride=2)
96
+ # self.layer4 = self._make_layers(block, 512, blocks_num[3], stride=1)
97
+
98
+ self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
99
+ self.fc = nn.Linear(256 * block.expansion, num_classes)
100
+
101
+ for m in self.modules():
102
+ if isinstance(m, nn.Conv2d):
103
+ nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
104
+ elif isinstance(m, nn.BatchNorm2d):
105
+ nn.init.constant_(m.weight, 1)
106
+ nn.init.constant_(m.bias, 0)
107
+
108
+ def _make_layers(self, block, channel, block_num, stride=1):
109
+ downsample = None
110
+ if stride != 1 or self.in_channel != channel * block.expansion:
111
+ downsample = nn.Sequential(
112
+ nn.Conv2d(self.in_channel, channel * block.expansion, kernel_size=1, stride=stride, bias=False),
113
+ nn.BatchNorm2d(channel * block.expansion)
114
+ )
115
+ layers = []
116
+ layers.append(block(self.in_channel, channel, downsample=downsample, stride=stride,
117
+ groups=self.groups, width_per_group=self.width_per_group))
118
+ self.in_channel = channel * block.expansion
119
+
120
+ for _ in range(1, block_num):
121
+ layers.append(block(self.in_channel, channel, groups=self.groups, width_per_group=self.width_per_group))
122
+
123
+ return nn.Sequential(*layers)
124
+
125
+ def forward(self, x):
126
+ x = self.conv1(x)
127
+ x = self.bn1(x)
128
+ x = self.relu(x)
129
+ x = self.maxpool(x)
130
+
131
+ x = self.layer1(x)
132
+ x = self.layer2(x)
133
+ x = self.layer3(x)
134
+ # x = self.layer4(x)
135
+ x = self.avgpool(x)
136
+ x = torch.flatten(x, 1)
137
+
138
+ # B x 512
139
+ if self.reid:
140
+ x = x.div(x.norm(p=2, dim=1, keepdim=True))
141
+ return x
142
+ # classifier
143
+ x = self.fc(x)
144
+ return x
145
+
146
+
147
+ def resnet18(num_classes=1000, reid=False):
148
+ # https://download.pytorch.org/models/resnet18-5c106cde.pth
149
+ return ResNet(BasicBlock, [2, 2, 2, 2], num_classes=num_classes, reid=reid)
150
+
151
+
152
+ def resnet34(num_classes=1000, reid=False):
153
+ # https://download.pytorch.org/models/resnet34-333f7ec4.pth
154
+ return ResNet(BasicBlock, [3, 4, 6, 3], num_classes=num_classes, reid=reid)
155
+
156
+
157
+ def resnet50(num_classes=1000, reid=False):
158
+ # https://download.pytorch.org/models/resnet50-19c8e357.pth
159
+ return ResNet(Bottleneck, [3, 4, 6, 3], num_classes=num_classes, reid=reid)
160
+
161
+
162
+ def resnext50_32x4d(num_classes=1000, reid=False):
163
+ # https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth
164
+ groups = 32
165
+ width_per_group = 4
166
+ return ResNet(Bottleneck, [3, 4, 6, 3], reid=reid,
167
+ num_classes=num_classes, groups=groups, width_per_group=width_per_group)
168
+
169
+
170
+ if __name__ == '__main__':
171
+ net = resnet18(reid=True)
172
+ x = torch.randn(4, 3, 128, 64)
173
+ y = net(x)
deep_sort/deep/test.py ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.backends.cudnn as cudnn
3
+ import torchvision
4
+
5
+ import argparse
6
+ import os
7
+
8
+ from model import Net
9
+
10
+ parser = argparse.ArgumentParser(description="Train on market1501")
11
+ parser.add_argument("--data-dir", default='data', type=str)
12
+ parser.add_argument("--no-cuda", action="store_true")
13
+ parser.add_argument("--gpu-id", default=0, type=int)
14
+ args = parser.parse_args()
15
+
16
+ # device
17
+ device = "cuda:{}".format(args.gpu_id) if torch.cuda.is_available() and not args.no_cuda else "cpu"
18
+ if torch.cuda.is_available() and not args.no_cuda:
19
+ cudnn.benchmark = True
20
+
21
+ # data loader
22
+ root = args.data_dir
23
+ query_dir = os.path.join(root, "query")
24
+ gallery_dir = os.path.join(root, "gallery")
25
+ transform = torchvision.transforms.Compose([
26
+ torchvision.transforms.Resize((128, 64)),
27
+ torchvision.transforms.ToTensor(),
28
+ torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
29
+ ])
30
+ queryloader = torch.utils.data.DataLoader(
31
+ torchvision.datasets.ImageFolder(query_dir, transform=transform),
32
+ batch_size=64, shuffle=False
33
+ )
34
+ galleryloader = torch.utils.data.DataLoader(
35
+ torchvision.datas0ets.ImageFolder(gallery_dir, transform=transform),
36
+ batch_size=64, shuffle=False
37
+ )
38
+
39
+ # net definition
40
+ net = Net(reid=True)
41
+ assert os.path.isfile("./checkpoint/ckpt.t7"), "Error: no checkpoint file found!"
42
+ print('Loading from checkpoint/ckpt.t7')
43
+ checkpoint = torch.load("./checkpoint/ckpt.t7")
44
+ net_dict = checkpoint['net_dict']
45
+ net.load_state_dict(net_dict, strict=False)
46
+ net.eval()
47
+ net.to(device)
48
+
49
+ # compute features
50
+ query_features = torch.tensor([]).float()
51
+ query_labels = torch.tensor([]).long()
52
+ gallery_features = torch.tensor([]).float()
53
+ gallery_labels = torch.tensor([]).long()
54
+
55
+ with torch.no_grad():
56
+ for idx, (inputs, labels) in enumerate(queryloader):
57
+ inputs = inputs.to(device)
58
+ features = net(inputs).cpu()
59
+ query_features = torch.cat((query_features, features), dim=0)
60
+ query_labels = torch.cat((query_labels, labels))
61
+
62
+ for idx, (inputs, labels) in enumerate(galleryloader):
63
+ inputs = inputs.to(device)
64
+ features = net(inputs).cpu()
65
+ gallery_features = torch.cat((gallery_features, features), dim=0)
66
+ gallery_labels = torch.cat((gallery_labels, labels))
67
+
68
+ gallery_labels -= 2
69
+
70
+ # save features
71
+ features = {
72
+ "qf": query_features,
73
+ "ql": query_labels,
74
+ "gf": gallery_features,
75
+ "gl": gallery_labels
76
+ }
77
+ torch.save(features, "features.pth")
deep_sort/deep/train.jpg ADDED

Git LFS Details

  • SHA256: d5ea8deb53c3cadc4917a253f06ac3d827843eedbb9ea8c4fb5780acd7e91850
  • Pointer size: 130 Bytes
  • Size of remote file: 60.3 kB
deep_sort/deep/train.py ADDED
@@ -0,0 +1,151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import os
3
+ import tempfile
4
+
5
+ import math
6
+ import warnings
7
+ import matplotlib.pyplot as plt
8
+ import torch
9
+ import torchvision
10
+ from torch.optim import lr_scheduler
11
+
12
+ from multi_train_utils.distributed_utils import init_distributed_mode, cleanup
13
+ from multi_train_utils.train_eval_utils import train_one_epoch, evaluate, load_model
14
+ import torch.distributed as dist
15
+ from datasets import ClsDataset, read_split_data
16
+
17
+ from model import Net
18
+ from resnet import resnet18
19
+
20
+ # plot figure
21
+ x_epoch = []
22
+ record = {'train_loss': [], 'train_err': [], 'test_loss': [], 'test_err': []}
23
+ fig = plt.figure()
24
+ ax0 = fig.add_subplot(121, title="loss")
25
+ ax1 = fig.add_subplot(122, title="top1_err")
26
+
27
+
28
+ def draw_curve(epoch, train_loss, train_err, test_loss, test_err):
29
+ global record
30
+ record['train_loss'].append(train_loss)
31
+ record['train_err'].append(train_err)
32
+ record['test_loss'].append(test_loss)
33
+ record['test_err'].append(test_err)
34
+
35
+ x_epoch.append(epoch)
36
+ ax0.plot(x_epoch, record['train_loss'], 'bo-', label='train')
37
+ ax0.plot(x_epoch, record['test_loss'], 'ro-', label='val')
38
+ ax1.plot(x_epoch, record['train_err'], 'bo-', label='train')
39
+ ax1.plot(x_epoch, record['test_err'], 'ro-', label='val')
40
+ if epoch == 0:
41
+ ax0.legend()
42
+ ax1.legend()
43
+ fig.savefig("train.jpg")
44
+
45
+
46
+ def main(args):
47
+ batch_size = args.batch_size
48
+ device = 'cuda:{}'.format(args.gpu_id) if torch.cuda.is_available() else 'cpu'
49
+
50
+ train_info, val_info, num_classes = read_split_data(args.data_dir, valid_rate=0.2)
51
+ train_images_path, train_labels = train_info
52
+ val_images_path, val_labels = val_info
53
+
54
+ transform_train = torchvision.transforms.Compose([
55
+ torchvision.transforms.RandomCrop((128, 64), padding=4),
56
+ torchvision.transforms.RandomHorizontalFlip(),
57
+ torchvision.transforms.ToTensor(),
58
+ torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
59
+ ])
60
+ transform_val = torchvision.transforms.Compose([
61
+ torchvision.transforms.Resize((128, 64)),
62
+ torchvision.transforms.ToTensor(),
63
+ torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
64
+ ])
65
+
66
+ train_dataset = ClsDataset(
67
+ images_path=train_images_path,
68
+ images_labels=train_labels,
69
+ transform=transform_train
70
+ )
71
+ val_dataset = ClsDataset(
72
+ images_path=val_images_path,
73
+ images_labels=val_labels,
74
+ transform=transform_val
75
+ )
76
+
77
+ number_workers = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8])
78
+ print('Using {} dataloader workers every process'.format(number_workers))
79
+
80
+ train_loader = torch.utils.data.DataLoader(
81
+ train_dataset,
82
+ batch_size=batch_size,
83
+ shuffle=True,
84
+ pin_memory=True,
85
+ num_workers=number_workers
86
+ )
87
+ val_loader = torch.utils.data.DataLoader(
88
+ val_dataset,
89
+ batch_size=batch_size,
90
+ shuffle=False,
91
+ pin_memory=True,
92
+ num_workers=number_workers,
93
+ )
94
+
95
+ # net definition
96
+ start_epoch = 0
97
+ net = Net(num_classes=num_classes)
98
+ if args.weights:
99
+ print('Loading from ', args.weights)
100
+ checkpoint = torch.load(args.weights, map_location='cpu')
101
+ net_dict = checkpoint if 'net_dict' not in checkpoint else checkpoint['net_dict']
102
+ start_epoch = checkpoint['epoch'] if 'epoch' in checkpoint else start_epoch
103
+ net = load_model(net_dict, net.state_dict(), net)
104
+
105
+ if args.freeze_layers:
106
+ for name, param in net.named_parameters():
107
+ if 'classifier' not in name:
108
+ param.requires_grad = False
109
+
110
+ net.to(device)
111
+
112
+ # loss and optimizer
113
+ pg = [p for p in net.parameters() if p.requires_grad]
114
+ optimizer = torch.optim.SGD(pg, args.lr, momentum=0.9, weight_decay=5e-4)
115
+
116
+ lr = lambda x: ((1 + math.cos(x * math.pi / args.epochs)) / 2) * (1 - args.lrf) + args.lrf
117
+ scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lr)
118
+ for epoch in range(start_epoch, start_epoch + args.epochs):
119
+ train_positive, train_loss = train_one_epoch(net, optimizer, train_loader, device, epoch)
120
+ train_acc = train_positive / len(train_dataset)
121
+ scheduler.step()
122
+
123
+ test_positive, test_loss = evaluate(net, val_loader, device)
124
+ test_acc = test_positive / len(val_dataset)
125
+
126
+ print('[epoch {}] accuracy: {}'.format(epoch, test_acc))
127
+
128
+ state_dict = {
129
+ 'net_dict': net.state_dict(),
130
+ 'acc': test_acc,
131
+ 'epoch': epoch
132
+ }
133
+ torch.save(state_dict, './checkpoint/model_{}.pth'.format(epoch))
134
+ draw_curve(epoch, train_loss, 1 - train_acc, test_loss, 1 - test_acc)
135
+
136
+
137
+ if __name__ == '__main__':
138
+ parser = argparse.ArgumentParser(description="Train on market1501")
139
+ parser.add_argument("--data-dir", default='data', type=str)
140
+ parser.add_argument('--epochs', type=int, default=40)
141
+ parser.add_argument('--batch_size', type=int, default=32)
142
+ parser.add_argument("--lr", default=0.001, type=float)
143
+ parser.add_argument('--lrf', default=0.1, type=float)
144
+
145
+ parser.add_argument('--weights', type=str, default='./checkpoint/resnet18.pth')
146
+ parser.add_argument('--freeze-layers', action='store_true')
147
+
148
+ parser.add_argument('--gpu_id', default='0', help='gpu id')
149
+ args = parser.parse_args()
150
+
151
+ main(args)
deep_sort/deep/train_multiGPU.py ADDED
@@ -0,0 +1,189 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import os
3
+ import tempfile
4
+
5
+ import math
6
+ import warnings
7
+ import matplotlib.pyplot as plt
8
+ import torch
9
+ import torchvision
10
+ from torch.optim import lr_scheduler
11
+
12
+ from multi_train_utils.distributed_utils import init_distributed_mode, cleanup
13
+ from multi_train_utils.train_eval_utils import train_one_epoch, evaluate, load_model
14
+ import torch.distributed as dist
15
+ from datasets import ClsDataset, read_split_data
16
+
17
+ from resnet import resnet18
18
+
19
+
20
+ # plot figure
21
+ x_epoch = []
22
+ record = {'train_loss': [], 'train_err': [], 'test_loss': [], 'test_err': []}
23
+ fig = plt.figure()
24
+ ax0 = fig.add_subplot(121, title="loss")
25
+ ax1 = fig.add_subplot(122, title="top1_err")
26
+
27
+
28
+ def draw_curve(epoch, train_loss, train_err, test_loss, test_err):
29
+ global record
30
+ record['train_loss'].append(train_loss)
31
+ record['train_err'].append(train_err)
32
+ record['test_loss'].append(test_loss)
33
+ record['test_err'].append(test_err)
34
+
35
+ x_epoch.append(epoch)
36
+ ax0.plot(x_epoch, record['train_loss'], 'bo-', label='train')
37
+ ax0.plot(x_epoch, record['test_loss'], 'ro-', label='val')
38
+ ax1.plot(x_epoch, record['train_err'], 'bo-', label='train')
39
+ ax1.plot(x_epoch, record['test_err'], 'ro-', label='val')
40
+ if epoch == 0:
41
+ ax0.legend()
42
+ ax1.legend()
43
+ fig.savefig("train.jpg")
44
+
45
+
46
+ def main(args):
47
+ init_distributed_mode(args)
48
+
49
+ rank = args.rank
50
+ device = torch.device(args.device)
51
+ batch_size = args.batch_size
52
+ weights_path = args.weights
53
+ args.lr *= args.world_size
54
+ checkpoint_path = ''
55
+
56
+ if rank == 0:
57
+ print(args)
58
+ if os.path.exists('./checkpoint') is False:
59
+ os.mkdir('./checkpoint')
60
+
61
+ train_info, val_info, num_classes = read_split_data(args.data_dir, valid_rate=0.2)
62
+ train_images_path, train_labels = train_info
63
+ val_images_path, val_labels = val_info
64
+
65
+ transform_train = torchvision.transforms.Compose([
66
+ torchvision.transforms.RandomCrop((128, 64), padding=4),
67
+ torchvision.transforms.RandomHorizontalFlip(),
68
+ torchvision.transforms.ToTensor(),
69
+ torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
70
+ ])
71
+ transform_val = torchvision.transforms.Compose([
72
+ torchvision.transforms.Resize((128, 64)),
73
+ torchvision.transforms.ToTensor(),
74
+ torchvision.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
75
+ ])
76
+
77
+ train_dataset = ClsDataset(
78
+ images_path=train_images_path,
79
+ images_labels=train_labels,
80
+ transform=transform_train
81
+ )
82
+ val_dataset = ClsDataset(
83
+ images_path=val_images_path,
84
+ images_labels=val_labels,
85
+ transform=transform_val
86
+ )
87
+ train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
88
+ val_sampler = torch.utils.data.distributed.DistributedSampler(val_dataset)
89
+
90
+ train_batch_sampler = torch.utils.data.BatchSampler(train_sampler, batch_size, drop_last=True)
91
+
92
+ number_workers = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8])
93
+
94
+ if rank == 0:
95
+ print('Using {} dataloader workers every process'.format(number_workers))
96
+
97
+ train_loader = torch.utils.data.DataLoader(
98
+ train_dataset,
99
+ batch_sampler=train_batch_sampler,
100
+ pin_memory=True,
101
+ num_workers=number_workers
102
+ )
103
+ val_loader = torch.utils.data.DataLoader(
104
+ val_dataset,
105
+ sampler=val_sampler,
106
+ batch_size=batch_size,
107
+ pin_memory=True,
108
+ num_workers=number_workers,
109
+ )
110
+
111
+ # net definition
112
+ start_epoch = 0
113
+ net = resnet18(num_classes=num_classes)
114
+ if args.weights:
115
+ print('Loading from ', args.weights)
116
+ checkpoint = torch.load(args.weights, map_location='cpu')
117
+ net_dict = checkpoint if 'net_dict' not in checkpoint else checkpoint['net_dict']
118
+ start_epoch = checkpoint['epoch'] if 'epoch' in checkpoint else start_epoch
119
+ net = load_model(net_dict, net.state_dict(), net)
120
+ else:
121
+ warnings.warn("better providing pretraining weights")
122
+ checkpoint_path = os.path.join(tempfile.gettempdir(), 'initial_weights.pth')
123
+ if rank == 0:
124
+ torch.save(net.state_dict(), checkpoint_path)
125
+
126
+ dist.barrier()
127
+ net.load_state_dict(torch.load(checkpoint_path, map_location='cpu'))
128
+
129
+ if args.freeze_layers:
130
+ for name, param in net.named_parameters():
131
+ if 'fc' not in name:
132
+ param.requires_grad = False
133
+ else:
134
+ if args.syncBN:
135
+ net = torch.nn.SyncBatchNorm.convert_sync_batchnorm(net)
136
+ net.to(device)
137
+
138
+ net = torch.nn.parallel.DistributedDataParallel(net, device_ids=[args.gpu])
139
+
140
+ # loss and optimizer
141
+ pg = [p for p in net.parameters() if p.requires_grad]
142
+ optimizer = torch.optim.SGD(pg, args.lr, momentum=0.9, weight_decay=5e-4)
143
+
144
+ lr = lambda x: ((1 + math.cos(x * math.pi / args.epochs)) / 2) * (1 - args.lrf) + args.lrf
145
+ scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lr)
146
+ for epoch in range(start_epoch, start_epoch + args.epochs):
147
+ train_positive, train_loss = train_one_epoch(net, optimizer, train_loader, device, epoch)
148
+ train_acc = train_positive / len(train_dataset)
149
+ scheduler.step()
150
+
151
+ test_positive, test_loss = evaluate(net, val_loader, device)
152
+ test_acc = test_positive / len(val_dataset)
153
+
154
+ if rank == 0:
155
+ print('[epoch {}] accuracy: {}'.format(epoch, test_acc))
156
+
157
+ state_dict = {
158
+ 'net_dict': net.module.state_dict(),
159
+ 'acc': test_acc,
160
+ 'epoch': epoch
161
+ }
162
+ torch.save(state_dict, './checkpoint/model_{}.pth'.format(epoch))
163
+ draw_curve(epoch, train_loss, 1 - train_acc, test_loss, 1 - test_acc)
164
+
165
+ if rank == 0:
166
+ if os.path.exists(checkpoint_path) is True:
167
+ os.remove(checkpoint_path)
168
+ cleanup()
169
+
170
+
171
+ if __name__ == '__main__':
172
+ parser = argparse.ArgumentParser(description="Train on market1501")
173
+ parser.add_argument("--data-dir", default='data', type=str)
174
+ parser.add_argument('--epochs', type=int, default=40)
175
+ parser.add_argument('--batch_size', type=int, default=32)
176
+ parser.add_argument("--lr", default=0.001, type=float)
177
+ parser.add_argument('--lrf', default=0.1, type=float)
178
+ parser.add_argument('--syncBN', type=bool, default=True)
179
+
180
+ parser.add_argument('--weights', type=str, default='./checkpoint/resnet18.pth')
181
+ parser.add_argument('--freeze-layers', action='store_true')
182
+
183
+ # not change the following parameters, the system will automatically assignment
184
+ parser.add_argument('--device', default='cuda', help='device id (i.e. 0 or 0, 1 or cpu)')
185
+ parser.add_argument('--world_size', default=4, type=int, help='number of distributed processes')
186
+ parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
187
+ args = parser.parse_args()
188
+
189
+ main(args)
deep_sort/deep_sort.py ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+
4
+ from .deep.feature_extractor import Extractor, FastReIDExtractor
5
+ from .sort.nn_matching import NearestNeighborDistanceMetric
6
+ from .sort.preprocessing import non_max_suppression
7
+ from .sort.detection import Detection
8
+ from .sort.tracker import Tracker
9
+
10
+ __all__ = ['DeepSort']
11
+
12
+
13
+ class DeepSort(object):
14
+ def __init__(self, model_path, model_config=None, max_dist=0.2, min_confidence=0.3, nms_max_overlap=1.0,
15
+ max_iou_distance=0.7, max_age=70, n_init=3, nn_budget=100, use_cuda=True):
16
+ self.min_confidence = min_confidence
17
+ self.nms_max_overlap = nms_max_overlap
18
+
19
+ if model_config is None:
20
+ self.extractor = Extractor(model_path, use_cuda=use_cuda)
21
+ else:
22
+ self.extractor = FastReIDExtractor(model_config, model_path, use_cuda=use_cuda)
23
+
24
+ max_cosine_distance = max_dist
25
+ metric = NearestNeighborDistanceMetric("cosine", max_cosine_distance, nn_budget)
26
+ self.tracker = Tracker(metric, max_iou_distance=max_iou_distance, max_age=max_age, n_init=n_init)
27
+
28
+ def update(self, bbox_xywh, confidences, classes, ori_img, masks=None):
29
+ self.height, self.width = ori_img.shape[:2]
30
+ # generate detections
31
+ features = self._get_features(bbox_xywh, ori_img)
32
+ bbox_tlwh = self._xywh_to_tlwh(bbox_xywh)
33
+ detections = [Detection(bbox_tlwh[i], conf, label, features[i], None if masks is None else masks[i])
34
+ for i, (conf, label) in enumerate(zip(confidences, classes))
35
+ if conf > self.min_confidence]
36
+
37
+ # run on non-maximum supression
38
+ boxes = np.array([d.tlwh for d in detections])
39
+ scores = np.array([d.confidence for d in detections])
40
+ indices = non_max_suppression(boxes, self.nms_max_overlap, scores)
41
+ detections = [detections[i] for i in indices]
42
+
43
+ # update tracker
44
+ self.tracker.predict()
45
+ self.tracker.update(detections)
46
+
47
+ # output bbox identities
48
+ outputs = []
49
+ mask_outputs = []
50
+ for track in self.tracker.tracks:
51
+ if not track.is_confirmed() or track.time_since_update > 1:
52
+ continue
53
+ box = track.to_tlwh()
54
+ x1, y1, x2, y2 = self._tlwh_to_xyxy(box)
55
+ track_id = track.track_id
56
+ track_cls = track.cls
57
+ outputs.append(np.array([x1, y1, x2, y2, track_cls, track_id], dtype=np.int32))
58
+ if track.mask is not None:
59
+ mask_outputs.append(track.mask)
60
+ if len(outputs) > 0:
61
+ outputs = np.stack(outputs, axis=0)
62
+ return outputs, mask_outputs
63
+
64
+ """
65
+ TODO:
66
+ Convert bbox from xc_yc_w_h to xtl_ytl_w_h
67
+ Thanks [email protected] for reporting this bug!
68
+ """
69
+
70
+ @staticmethod
71
+ def _xywh_to_tlwh(bbox_xywh):
72
+ if isinstance(bbox_xywh, np.ndarray):
73
+ bbox_tlwh = bbox_xywh.copy()
74
+ elif isinstance(bbox_xywh, torch.Tensor):
75
+ bbox_tlwh = bbox_xywh.clone()
76
+ bbox_tlwh[:, 0] = bbox_xywh[:, 0] - bbox_xywh[:, 2] / 2.
77
+ bbox_tlwh[:, 1] = bbox_xywh[:, 1] - bbox_xywh[:, 3] / 2.
78
+ return bbox_tlwh
79
+
80
+ def _xywh_to_xyxy(self, bbox_xywh):
81
+ x, y, w, h = bbox_xywh
82
+ x1 = max(int(x - w / 2), 0)
83
+ x2 = min(int(x + w / 2), self.width - 1)
84
+ y1 = max(int(y - h / 2), 0)
85
+ y2 = min(int(y + h / 2), self.height - 1)
86
+ return x1, y1, x2, y2
87
+
88
+ def _tlwh_to_xyxy(self, bbox_tlwh):
89
+ """
90
+ TODO:
91
+ Convert bbox from xtl_ytl_w_h to xc_yc_w_h
92
+ Thanks [email protected] for reporting this bug!
93
+ """
94
+ x, y, w, h = bbox_tlwh
95
+ x1 = max(int(x), 0)
96
+ x2 = min(int(x + w), self.width - 1)
97
+ y1 = max(int(y), 0)
98
+ y2 = min(int(y + h), self.height - 1)
99
+ return x1, y1, x2, y2
100
+
101
+ @staticmethod
102
+ def _xyxy_to_tlwh(bbox_xyxy):
103
+ x1, y1, x2, y2 = bbox_xyxy
104
+
105
+ t = x1
106
+ l = y1
107
+ w = int(x2 - x1)
108
+ h = int(y2 - y1)
109
+ return t, l, w, h
110
+
111
+ def _get_features(self, bbox_xywh, ori_img):
112
+ im_crops = []
113
+ for box in bbox_xywh:
114
+ x1, y1, x2, y2 = self._xywh_to_xyxy(box)
115
+ im = ori_img[y1:y2, x1:x2]
116
+ im_crops.append(im)
117
+ if im_crops:
118
+ features = self.extractor(im_crops)
119
+ else:
120
+ features = np.array([])
121
+ return features
deep_sort/sort/__init__.py ADDED
File without changes
deep_sort/sort/detection.py ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # vim: expandtab:ts=4:sw=4
2
+ import numpy as np
3
+
4
+
5
+ class Detection(object):
6
+ """
7
+ This class represents a bounding box detection in a single image.
8
+
9
+ Parameters
10
+ ----------
11
+ tlwh : array_like
12
+ Bounding box in format `(x, y, w, h)`.
13
+ confidence : float
14
+ Detector confidence score.
15
+ feature : array_like
16
+ A feature vector that describes the object contained in this image.
17
+
18
+ Attributes
19
+ ----------
20
+ tlwh : ndarray
21
+ Bounding box in format `(top left x, top left y, width, height)`.
22
+ confidence : ndarray
23
+ Detector confidence score.
24
+ feature : ndarray | NoneType
25
+ A feature vector that describes the object contained in this image.
26
+
27
+ """
28
+
29
+ def __init__(self, tlwh, confidence, label, feature, mask=None):
30
+ self.tlwh = np.asarray(tlwh, dtype=np.float32)
31
+ self.confidence = float(confidence)
32
+ self.cls = int(label)
33
+ self.feature = np.asarray(feature, dtype=np.float32)
34
+ self.mask = mask
35
+
36
+ def to_tlbr(self):
37
+ """Convert bounding box to format `(min x, min y, max x, max y)`, i.e.,
38
+ `(top left, bottom right)`.
39
+ """
40
+ ret = self.tlwh.copy()
41
+ ret[2:] += ret[:2]
42
+ return ret
43
+
44
+ def to_xyah(self):
45
+ """Convert bounding box to format `(center x, center y, aspect ratio,
46
+ height)`, where the aspect ratio is `width / height`.
47
+ """
48
+ ret = self.tlwh.copy()
49
+ ret[:2] += ret[2:] / 2
50
+ ret[2] /= ret[3]
51
+ return ret
deep_sort/sort/iou_matching.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # vim: expandtab:ts=4:sw=4
2
+ from __future__ import absolute_import
3
+ import numpy as np
4
+ from . import linear_assignment
5
+
6
+
7
+ def iou(bbox, candidates):
8
+ """Computer intersection over union.
9
+
10
+ Parameters
11
+ ----------
12
+ bbox : ndarray
13
+ A bounding box in format `(top left x, top left y, width, height)`.
14
+ candidates : ndarray
15
+ A matrix of candidate bounding boxes (one per row) in the same format
16
+ as `bbox`.
17
+
18
+ Returns
19
+ -------
20
+ ndarray
21
+ The intersection over union in [0, 1] between the `bbox` and each
22
+ candidate. A higher score means a larger fraction of the `bbox` is
23
+ occluded by the candidate.
24
+
25
+ """
26
+ bbox_tl, bbox_br = bbox[:2], bbox[:2] + bbox[2:]
27
+ candidates_tl = candidates[:, :2]
28
+ candidates_br = candidates[:, :2] + candidates[:, 2:]
29
+
30
+ tl = np.c_[np.maximum(bbox_tl[0], candidates_tl[:, 0])[:, np.newaxis],
31
+ np.maximum(bbox_tl[1], candidates_tl[:, 1])[:, np.newaxis]]
32
+ br = np.c_[np.minimum(bbox_br[0], candidates_br[:, 0])[:, np.newaxis],
33
+ np.minimum(bbox_br[1], candidates_br[:, 1])[:, np.newaxis]]
34
+ wh = np.maximum(0., br - tl)
35
+
36
+ area_intersection = wh.prod(axis=1)
37
+ area_bbox = bbox[2:].prod()
38
+ area_candidates = candidates[:, 2:].prod(axis=1)
39
+ return area_intersection / (area_bbox + area_candidates - area_intersection)
40
+
41
+
42
+ def iou_cost(tracks, detections, track_indices=None,
43
+ detection_indices=None):
44
+ """An intersection over union distance metric.
45
+
46
+ Parameters
47
+ ----------
48
+ tracks : List[deep_sort.track.Track]
49
+ A list of tracks.
50
+ detections : List[deep_sort.detection.Detection]
51
+ A list of detections.
52
+ track_indices : Optional[List[int]]
53
+ A list of indices to tracks that should be matched. Defaults to
54
+ all `tracks`.
55
+ detection_indices : Optional[List[int]]
56
+ A list of indices to detections that should be matched. Defaults
57
+ to all `detections`.
58
+
59
+ Returns
60
+ -------
61
+ ndarray
62
+ Returns a cost matrix of shape
63
+ len(track_indices), len(detection_indices) where entry (i, j) is
64
+ `1 - iou(tracks[track_indices[i]], detections[detection_indices[j]])`.
65
+
66
+ """
67
+ if track_indices is None:
68
+ track_indices = np.arange(len(tracks))
69
+ if detection_indices is None:
70
+ detection_indices = np.arange(len(detections))
71
+
72
+ cost_matrix = np.zeros((len(track_indices), len(detection_indices)))
73
+ for row, track_idx in enumerate(track_indices):
74
+ if tracks[track_idx].time_since_update > 1:
75
+ cost_matrix[row, :] = linear_assignment.INFTY_COST
76
+ continue
77
+
78
+ bbox = tracks[track_idx].to_tlwh()
79
+ candidates = np.asarray([detections[i].tlwh for i in detection_indices])
80
+ cost_matrix[row, :] = 1. - iou(bbox, candidates)
81
+ return cost_matrix
deep_sort/sort/kalman_filter.py ADDED
@@ -0,0 +1,231 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # vim: expandtab:ts=4:sw=4
2
+ import numpy as np
3
+ import scipy.linalg
4
+
5
+
6
+ """
7
+ Table for the 0.95 quantile of the chi-square distribution with N degrees of
8
+ freedom (contains values for N=1, ..., 9). Taken from MATLAB/Octave's chi2inv
9
+ function and used as Mahalanobis gating threshold.
10
+ """
11
+ chi2inv95 = {
12
+ 1: 3.8415,
13
+ 2: 5.9915,
14
+ 3: 7.8147,
15
+ 4: 9.4877,
16
+ 5: 11.070,
17
+ 6: 12.592,
18
+ 7: 14.067,
19
+ 8: 15.507,
20
+ 9: 16.919}
21
+
22
+
23
+ class KalmanFilter(object):
24
+ """
25
+ A simple Kalman filter for tracking bounding boxes in image space.
26
+
27
+ The 8-dimensional state space
28
+
29
+ x, y, a, h, vx, vy, va, vh
30
+
31
+ contains the bounding box center position (x, y), aspect ratio a, height h,
32
+ and their respective velocities.
33
+
34
+ Object motion follows a constant velocity model. The bounding box location
35
+ (x, y, a, h) is taken as direct observation of the state space (linear
36
+ observation model).
37
+
38
+ """
39
+
40
+ def __init__(self):
41
+ ndim, dt = 4, 1.
42
+
43
+ # Create Kalman filter model matrices.
44
+ self._motion_mat = np.eye(2 * ndim, 2 * ndim)
45
+ for i in range(ndim):
46
+ self._motion_mat[i, ndim + i] = dt
47
+ self._update_mat = np.eye(ndim, 2 * ndim)
48
+
49
+ # Motion and observation uncertainty are chosen relative to the current
50
+ # state estimate. These weights control the amount of uncertainty in
51
+ # the model. This is a bit hacky.
52
+ self._std_weight_position = 1. / 20
53
+ self._std_weight_velocity = 1. / 160
54
+
55
+ def initiate(self, measurement):
56
+ """Create track from unassociated measurement.
57
+
58
+ Parameters
59
+ ----------
60
+ measurement : ndarray
61
+ Bounding box coordinates (x, y, a, h) with center position (x, y),
62
+ aspect ratio a, and height h.
63
+
64
+ Returns
65
+ -------
66
+ (ndarray, ndarray)
67
+ Returns the mean vector (8 dimensional) and covariance matrix (8x8
68
+ dimensional) of the new track. Unobserved velocities are initialized
69
+ to 0 mean.
70
+
71
+ """
72
+ mean_pos = measurement
73
+ mean_vel = np.zeros_like(mean_pos)
74
+ mean = np.r_[mean_pos, mean_vel]
75
+
76
+ std = [
77
+ 2 * self._std_weight_position * measurement[3],
78
+ 2 * self._std_weight_position * measurement[3],
79
+ 1e-2,
80
+ 2 * self._std_weight_position * measurement[3],
81
+ 10 * self._std_weight_velocity * measurement[3],
82
+ 10 * self._std_weight_velocity * measurement[3],
83
+ 1e-5,
84
+ 10 * self._std_weight_velocity * measurement[3]]
85
+ covariance = np.diag(np.square(std))
86
+ return mean, covariance
87
+
88
+ def predict(self, mean, covariance):
89
+ """Run Kalman filter prediction step.
90
+
91
+ Parameters
92
+ ----------
93
+ mean : ndarray
94
+ The 8 dimensional mean vector of the object state at the previous
95
+ time step.
96
+ covariance : ndarray
97
+ The 8x8 dimensional covariance matrix of the object state at the
98
+ previous time step.
99
+
100
+ Returns
101
+ -------
102
+ (ndarray, ndarray)
103
+ Returns the mean vector and covariance matrix of the predicted
104
+ state. Unobserved velocities are initialized to 0 mean.
105
+
106
+ """
107
+ std_pos = [
108
+ self._std_weight_position * mean[3],
109
+ self._std_weight_position * mean[3],
110
+ 1e-2,
111
+ self._std_weight_position * mean[3]]
112
+ std_vel = [
113
+ self._std_weight_velocity * mean[3],
114
+ self._std_weight_velocity * mean[3],
115
+ 1e-5,
116
+ self._std_weight_velocity * mean[3]]
117
+ motion_cov = np.diag(np.square(np.r_[std_pos, std_vel]))
118
+
119
+ mean = np.dot(self._motion_mat, mean)
120
+ covariance = np.linalg.multi_dot((
121
+ self._motion_mat, covariance, self._motion_mat.T)) + motion_cov
122
+
123
+ return mean, covariance
124
+
125
+ def project(self, mean, covariance):
126
+ """Project state distribution to measurement space.
127
+
128
+ Parameters
129
+ ----------
130
+ mean : ndarray
131
+ The state's mean vector (8 dimensional array).
132
+ covariance : ndarray
133
+ The state's covariance matrix (8x8 dimensional).
134
+
135
+ Returns
136
+ -------
137
+ (ndarray, ndarray)
138
+ Returns the projected mean and covariance matrix of the given state
139
+ estimate.
140
+
141
+ """
142
+ std = [
143
+ self._std_weight_position * mean[3],
144
+ self._std_weight_position * mean[3],
145
+ 1e-1,
146
+ self._std_weight_position * mean[3]]
147
+ innovation_cov = np.diag(np.square(std))
148
+
149
+ mean = np.dot(self._update_mat, mean)
150
+ covariance = np.linalg.multi_dot((
151
+ self._update_mat, covariance, self._update_mat.T))
152
+ return mean, covariance + innovation_cov
153
+
154
+ def update(self, mean, covariance, measurement):
155
+ """Run Kalman filter correction step.
156
+
157
+ Parameters
158
+ ----------
159
+ mean : ndarray
160
+ The predicted state's mean vector (8 dimensional).
161
+ covariance : ndarray
162
+ The state's covariance matrix (8x8 dimensional).
163
+ measurement : ndarray
164
+ The 4 dimensional measurement vector (x, y, a, h), where (x, y)
165
+ is the center position, a the aspect ratio, and h the height of the
166
+ bounding box.
167
+
168
+ Returns
169
+ -------
170
+ (ndarray, ndarray)
171
+ Returns the measurement-corrected state distribution.
172
+
173
+ """
174
+ projected_mean, projected_cov = self.project(mean, covariance)
175
+
176
+ chol_factor, lower = scipy.linalg.cho_factor(
177
+ projected_cov, lower=True, check_finite=False)
178
+ kalman_gain = scipy.linalg.cho_solve(
179
+ (chol_factor, lower), np.dot(covariance, self._update_mat.T).T,
180
+ check_finite=False).T
181
+ innovation = measurement - projected_mean
182
+
183
+ new_mean = mean + np.dot(innovation, kalman_gain.T)
184
+ # new_covariance = covariance - np.linalg.multi_dot((
185
+ # kalman_gain, projected_cov, kalman_gain.T))
186
+ new_covariance = covariance - np.linalg.multi_dot((
187
+ kalman_gain, self._update_mat, covariance))
188
+ return new_mean, new_covariance
189
+
190
+ def gating_distance(self, mean, covariance, measurements,
191
+ only_position=False):
192
+ """Compute gating distance between state distribution and measurements.
193
+
194
+ A suitable distance threshold can be obtained from `chi2inv95`. If
195
+ `only_position` is False, the chi-square distribution has 4 degrees of
196
+ freedom, otherwise 2.
197
+
198
+ Parameters
199
+ ----------
200
+ mean : ndarray
201
+ Mean vector over the state distribution (8 dimensional).
202
+ covariance : ndarray
203
+ Covariance of the state distribution (8x8 dimensional).
204
+ measurements : ndarray
205
+ An Nx4 dimensional matrix of N measurements, each in
206
+ format (x, y, a, h) where (x, y) is the bounding box center
207
+ position, a the aspect ratio, and h the height.
208
+ only_position : Optional[bool]
209
+ If True, distance computation is done with respect to the bounding
210
+ box center position only.
211
+
212
+ Returns
213
+ -------
214
+ ndarray
215
+ Returns an array of length N, where the i-th element contains the
216
+ squared Mahalanobis distance between (mean, covariance) and
217
+ `measurements[i]`.
218
+
219
+ """
220
+ mean, covariance = self.project(mean, covariance)
221
+ if only_position:
222
+ mean, covariance = mean[:2], covariance[:2, :2]
223
+ measurements = measurements[:, :2]
224
+
225
+ cholesky_factor = np.linalg.cholesky(covariance)
226
+ d = measurements - mean
227
+ z = scipy.linalg.solve_triangular(
228
+ cholesky_factor, d.T, lower=True, check_finite=False,
229
+ overwrite_b=True)
230
+ squared_maha = np.sum(z * z, axis=0)
231
+ return squared_maha
deep_sort/sort/linear_assignment.py ADDED
@@ -0,0 +1,192 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # vim: expandtab:ts=4:sw=4
2
+ from __future__ import absolute_import
3
+ import numpy as np
4
+ # from sklearn.utils.linear_assignment_ import linear_assignment
5
+ from scipy.optimize import linear_sum_assignment as linear_assignment
6
+ from . import kalman_filter
7
+
8
+
9
+ INFTY_COST = 1e+5
10
+
11
+
12
+ def min_cost_matching(
13
+ distance_metric, max_distance, tracks, detections, track_indices=None,
14
+ detection_indices=None):
15
+ """Solve linear assignment problem.
16
+
17
+ Parameters
18
+ ----------
19
+ distance_metric : Callable[List[Track], List[Detection], List[int], List[int]) -> ndarray
20
+ The distance metric is given a list of tracks and detections as well as
21
+ a list of N track indices and M detection indices. The metric should
22
+ return the NxM dimensional cost matrix, where element (i, j) is the
23
+ association cost between the i-th track in the given track indices and
24
+ the j-th detection in the given detection_indices.
25
+ max_distance : float
26
+ Gating threshold. Associations with cost larger than this value are
27
+ disregarded.
28
+ tracks : List[track.Track]
29
+ A list of predicted tracks at the current time step.
30
+ detections : List[detection.Detection]
31
+ A list of detections at the current time step.
32
+ track_indices : List[int]
33
+ List of track indices that maps rows in `cost_matrix` to tracks in
34
+ `tracks` (see description above).
35
+ detection_indices : List[int]
36
+ List of detection indices that maps columns in `cost_matrix` to
37
+ detections in `detections` (see description above).
38
+
39
+ Returns
40
+ -------
41
+ (List[(int, int)], List[int], List[int])
42
+ Returns a tuple with the following three entries:
43
+ * A list of matched track and detection indices.
44
+ * A list of unmatched track indices.
45
+ * A list of unmatched detection indices.
46
+
47
+ """
48
+ if track_indices is None:
49
+ track_indices = np.arange(len(tracks))
50
+ if detection_indices is None:
51
+ detection_indices = np.arange(len(detections))
52
+
53
+ if len(detection_indices) == 0 or len(track_indices) == 0:
54
+ return [], track_indices, detection_indices # Nothing to match.
55
+
56
+ cost_matrix = distance_metric(
57
+ tracks, detections, track_indices, detection_indices)
58
+ cost_matrix[cost_matrix > max_distance] = max_distance + 1e-5
59
+
60
+ row_indices, col_indices = linear_assignment(cost_matrix)
61
+
62
+ matches, unmatched_tracks, unmatched_detections = [], [], []
63
+ for col, detection_idx in enumerate(detection_indices):
64
+ if col not in col_indices:
65
+ unmatched_detections.append(detection_idx)
66
+ for row, track_idx in enumerate(track_indices):
67
+ if row not in row_indices:
68
+ unmatched_tracks.append(track_idx)
69
+ for row, col in zip(row_indices, col_indices):
70
+ track_idx = track_indices[row]
71
+ detection_idx = detection_indices[col]
72
+ if cost_matrix[row, col] > max_distance:
73
+ unmatched_tracks.append(track_idx)
74
+ unmatched_detections.append(detection_idx)
75
+ else:
76
+ matches.append((track_idx, detection_idx))
77
+ return matches, unmatched_tracks, unmatched_detections
78
+
79
+
80
+ def matching_cascade(
81
+ distance_metric, max_distance, cascade_depth, tracks, detections,
82
+ track_indices=None, detection_indices=None):
83
+ """Run matching cascade.
84
+
85
+ Parameters
86
+ ----------
87
+ distance_metric : Callable[List[Track], List[Detection], List[int], List[int]) -> ndarray
88
+ The distance metric is given a list of tracks and detections as well as
89
+ a list of N track indices and M detection indices. The metric should
90
+ return the NxM dimensional cost matrix, where element (i, j) is the
91
+ association cost between the i-th track in the given track indices and
92
+ the j-th detection in the given detection indices.
93
+ max_distance : float
94
+ Gating threshold. Associations with cost larger than this value are
95
+ disregarded.
96
+ cascade_depth: int
97
+ The cascade depth, should be se to the maximum track age.
98
+ tracks : List[track.Track]
99
+ A list of predicted tracks at the current time step.
100
+ detections : List[detection.Detection]
101
+ A list of detections at the current time step.
102
+ track_indices : Optional[List[int]]
103
+ List of track indices that maps rows in `cost_matrix` to tracks in
104
+ `tracks` (see description above). Defaults to all tracks.
105
+ detection_indices : Optional[List[int]]
106
+ List of detection indices that maps columns in `cost_matrix` to
107
+ detections in `detections` (see description above). Defaults to all
108
+ detections.
109
+
110
+ Returns
111
+ -------
112
+ (List[(int, int)], List[int], List[int])
113
+ Returns a tuple with the following three entries:
114
+ * A list of matched track and detection indices.
115
+ * A list of unmatched track indices.
116
+ * A list of unmatched detection indices.
117
+
118
+ """
119
+ if track_indices is None:
120
+ track_indices = list(range(len(tracks)))
121
+ if detection_indices is None:
122
+ detection_indices = list(range(len(detections)))
123
+
124
+ unmatched_detections = detection_indices
125
+ matches = []
126
+ for level in range(cascade_depth):
127
+ if len(unmatched_detections) == 0: # No detections left
128
+ break
129
+
130
+ track_indices_l = [
131
+ k for k in track_indices
132
+ if tracks[k].time_since_update == 1 + level
133
+ ]
134
+ if len(track_indices_l) == 0: # Nothing to match at this level
135
+ continue
136
+
137
+ matches_l, _, unmatched_detections = \
138
+ min_cost_matching(
139
+ distance_metric, max_distance, tracks, detections,
140
+ track_indices_l, unmatched_detections)
141
+ matches += matches_l
142
+ unmatched_tracks = list(set(track_indices) - set(k for k, _ in matches))
143
+ return matches, unmatched_tracks, unmatched_detections
144
+
145
+
146
+ def gate_cost_matrix(
147
+ kf, cost_matrix, tracks, detections, track_indices, detection_indices,
148
+ gated_cost=INFTY_COST, only_position=False):
149
+ """Invalidate infeasible entries in cost matrix based on the state
150
+ distributions obtained by Kalman filtering.
151
+
152
+ Parameters
153
+ ----------
154
+ kf : The Kalman filter.
155
+ cost_matrix : ndarray
156
+ The NxM dimensional cost matrix, where N is the number of track indices
157
+ and M is the number of detection indices, such that entry (i, j) is the
158
+ association cost between `tracks[track_indices[i]]` and
159
+ `detections[detection_indices[j]]`.
160
+ tracks : List[track.Track]
161
+ A list of predicted tracks at the current time step.
162
+ detections : List[detection.Detection]
163
+ A list of detections at the current time step.
164
+ track_indices : List[int]
165
+ List of track indices that maps rows in `cost_matrix` to tracks in
166
+ `tracks` (see description above).
167
+ detection_indices : List[int]
168
+ List of detection indices that maps columns in `cost_matrix` to
169
+ detections in `detections` (see description above).
170
+ gated_cost : Optional[float]
171
+ Entries in the cost matrix corresponding to infeasible associations are
172
+ set this value. Defaults to a very large value.
173
+ only_position : Optional[bool]
174
+ If True, only the x, y position of the state distribution is considered
175
+ during gating. Defaults to False.
176
+
177
+ Returns
178
+ -------
179
+ ndarray
180
+ Returns the modified cost matrix.
181
+
182
+ """
183
+ gating_dim = 2 if only_position else 4
184
+ gating_threshold = kalman_filter.chi2inv95[gating_dim]
185
+ measurements = np.asarray(
186
+ [detections[i].to_xyah() for i in detection_indices])
187
+ for row, track_idx in enumerate(track_indices):
188
+ track = tracks[track_idx]
189
+ gating_distance = kf.gating_distance(
190
+ track.mean, track.covariance, measurements, only_position)
191
+ cost_matrix[row, gating_distance > gating_threshold] = gated_cost
192
+ return cost_matrix
deep_sort/sort/nn_matching.py ADDED
@@ -0,0 +1,176 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # vim: expandtab:ts=4:sw=4
2
+ import numpy as np
3
+
4
+
5
+ def _pdist(a, b):
6
+ """Compute pair-wise squared distance between points in `a` and `b`.
7
+
8
+ Parameters
9
+ ----------
10
+ a : array_like
11
+ An NxM matrix of N samples of dimensionality M.
12
+ b : array_like
13
+ An LxM matrix of L samples of dimensionality M.
14
+
15
+ Returns
16
+ -------
17
+ ndarray
18
+ Returns a matrix of size len(a), len(b) such that eleement (i, j)
19
+ contains the squared distance between `a[i]` and `b[j]`.
20
+
21
+ """
22
+ a, b = np.asarray(a), np.asarray(b)
23
+ if len(a) == 0 or len(b) == 0:
24
+ return np.zeros((len(a), len(b)))
25
+ a2, b2 = np.square(a).sum(axis=1), np.square(b).sum(axis=1)
26
+ r2 = -2. * np.dot(a, b.T) + a2[:, None] + b2[None, :]
27
+ r2 = np.clip(r2, 0., float(np.inf))
28
+ return r2
29
+
30
+
31
+ def _cosine_distance(a, b, data_is_normalized=False):
32
+ """Compute pair-wise cosine distance between points in `a` and `b`.
33
+
34
+ Parameters
35
+ ----------
36
+ a : array_like
37
+ An NxM matrix of N samples of dimensionality M.
38
+ b : array_like
39
+ An LxM matrix of L samples of dimensionality M.
40
+ data_is_normalized : Optional[bool]
41
+ If True, assumes rows in a and b are unit length vectors.
42
+ Otherwise, a and b are explicitly normalized to lenght 1.
43
+
44
+ Returns
45
+ -------
46
+ ndarray
47
+ Returns a matrix of size len(a), len(b) such that eleement (i, j)
48
+ contains the squared distance between `a[i]` and `b[j]`.
49
+
50
+ """
51
+ if not data_is_normalized:
52
+ a = np.asarray(a) / np.linalg.norm(a, axis=1, keepdims=True)
53
+ b = np.asarray(b) / np.linalg.norm(b, axis=1, keepdims=True)
54
+ return 1. - np.dot(a, b.T)
55
+
56
+
57
+ def _nn_euclidean_distance(x, y):
58
+ """ Helper function for nearest neighbor distance metric (Euclidean).
59
+
60
+ Parameters
61
+ ----------
62
+ x : ndarray
63
+ A matrix of N row-vectors (sample points).
64
+ y : ndarray
65
+ A matrix of M row-vectors (query points).
66
+
67
+ Returns
68
+ -------
69
+ ndarray
70
+ A vector of length M that contains for each entry in `y` the
71
+ smallest Euclidean distance to a sample in `x`.
72
+
73
+ """
74
+ distances = _pdist(x, y)
75
+ return np.maximum(0.0, distances.min(axis=0))
76
+
77
+
78
+ def _nn_cosine_distance(x, y):
79
+ """ Helper function for nearest neighbor distance metric (cosine).
80
+
81
+ Parameters
82
+ ----------
83
+ x : ndarray
84
+ A matrix of N row-vectors (sample points).
85
+ y : ndarray
86
+ A matrix of M row-vectors (query points).
87
+
88
+ Returns
89
+ -------
90
+ ndarray
91
+ A vector of length M that contains for each entry in `y` the
92
+ smallest cosine distance to a sample in `x`.
93
+
94
+ """
95
+ distances = _cosine_distance(x, y)
96
+ return distances.min(axis=0)
97
+
98
+
99
+ class NearestNeighborDistanceMetric(object):
100
+ """
101
+ A nearest neighbor distance metric that, for each target, returns
102
+ the closest distance to any sample that has been observed so far.
103
+
104
+ Parameters
105
+ ----------
106
+ metric : str
107
+ Either "euclidean" or "cosine".
108
+ matching_threshold: float
109
+ The matching threshold. Samples with larger distance are considered an
110
+ invalid match.
111
+ budget : Optional[int]
112
+ If not None, fix samples per class to at most this number. Removes
113
+ the oldest samples when the budget is reached.
114
+
115
+ Attributes
116
+ ----------
117
+ samples : Dict[int -> List[ndarray]]
118
+ A dictionary that maps from target identities to the list of samples
119
+ that have been observed so far.
120
+
121
+ """
122
+
123
+ def __init__(self, metric, matching_threshold, budget=None):
124
+
125
+ if metric == "euclidean":
126
+ self._metric = _nn_euclidean_distance
127
+ elif metric == "cosine":
128
+ self._metric = _nn_cosine_distance
129
+ else:
130
+ raise ValueError(
131
+ "Invalid metric; must be either 'euclidean' or 'cosine'")
132
+ self.matching_threshold = matching_threshold
133
+ self.budget = budget
134
+ self.samples = {}
135
+
136
+ def partial_fit(self, features, targets, active_targets):
137
+ """Update the distance metric with new data.
138
+
139
+ Parameters
140
+ ----------
141
+ features : ndarray
142
+ An NxM matrix of N features of dimensionality M.
143
+ targets : ndarray
144
+ An integer array of associated target identities.
145
+ active_targets : List[int]
146
+ A list of targets that are currently present in the scene.
147
+
148
+ """
149
+ for feature, target in zip(features, targets):
150
+ self.samples.setdefault(target, []).append(feature)
151
+ if self.budget is not None:
152
+ self.samples[target] = self.samples[target][-self.budget:]
153
+ self.samples = {k: self.samples[k] for k in active_targets}
154
+
155
+ def distance(self, features, targets):
156
+ """Compute distance between features and targets.
157
+
158
+ Parameters
159
+ ----------
160
+ features : ndarray
161
+ An NxM matrix of N features of dimensionality M.
162
+ targets : List[int]
163
+ A list of targets to match the given `features` against.
164
+
165
+ Returns
166
+ -------
167
+ ndarray
168
+ Returns a cost matrix of shape len(targets), len(features), where
169
+ element (i, j) contains the closest squared distance between
170
+ `targets[i]` and `features[j]`.
171
+
172
+ """
173
+ cost_matrix = np.zeros((len(targets), len(features)))
174
+ for i, target in enumerate(targets):
175
+ cost_matrix[i, :] = self._metric(self.samples[target], features)
176
+ return cost_matrix
deep_sort/sort/preprocessing.py ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # vim: expandtab:ts=4:sw=4
2
+ import numpy as np
3
+ import cv2
4
+
5
+
6
+ def non_max_suppression(boxes, max_bbox_overlap, scores=None):
7
+ """Suppress overlapping detections.
8
+
9
+ Original code from [1]_ has been adapted to include confidence score.
10
+
11
+ .. [1] http://www.pyimagesearch.com/2015/02/16/
12
+ faster-non-maximum-suppression-python/
13
+
14
+ Examples
15
+ --------
16
+
17
+ >>> boxes = [d.roi for d in detections]
18
+ >>> scores = [d.confidence for d in detections]
19
+ >>> indices = non_max_suppression(boxes, max_bbox_overlap, scores)
20
+ >>> detections = [detections[i] for i in indices]
21
+
22
+ Parameters
23
+ ----------
24
+ boxes : ndarray
25
+ Array of ROIs (x, y, width, height).
26
+ max_bbox_overlap : float
27
+ ROIs that overlap more than this values are suppressed.
28
+ scores : Optional[array_like]
29
+ Detector confidence score.
30
+
31
+ Returns
32
+ -------
33
+ List[int]
34
+ Returns indices of detections that have survived non-maxima suppression.
35
+
36
+ """
37
+ if len(boxes) == 0:
38
+ return []
39
+
40
+ boxes = boxes.astype(np.float32)
41
+ pick = []
42
+
43
+ x1 = boxes[:, 0]
44
+ y1 = boxes[:, 1]
45
+ x2 = boxes[:, 2] + boxes[:, 0]
46
+ y2 = boxes[:, 3] + boxes[:, 1]
47
+
48
+ area = (x2 - x1 + 1) * (y2 - y1 + 1)
49
+ if scores is not None:
50
+ idxs = np.argsort(scores)
51
+ else:
52
+ idxs = np.argsort(y2)
53
+
54
+ while len(idxs) > 0:
55
+ last = len(idxs) - 1
56
+ i = idxs[last]
57
+ pick.append(i)
58
+
59
+ xx1 = np.maximum(x1[i], x1[idxs[:last]])
60
+ yy1 = np.maximum(y1[i], y1[idxs[:last]])
61
+ xx2 = np.minimum(x2[i], x2[idxs[:last]])
62
+ yy2 = np.minimum(y2[i], y2[idxs[:last]])
63
+
64
+ w = np.maximum(0, xx2 - xx1 + 1)
65
+ h = np.maximum(0, yy2 - yy1 + 1)
66
+
67
+ overlap = (w * h) / (area[idxs[:last]] + area[idxs[last]] - w * h)
68
+
69
+ idxs = np.delete(
70
+ idxs, np.concatenate(
71
+ ([last], np.where(overlap > max_bbox_overlap)[0])))
72
+
73
+ return pick
deep_sort/sort/track.py ADDED
@@ -0,0 +1,169 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # vim: expandtab:ts=4:sw=4
2
+
3
+
4
+ class TrackState:
5
+ """
6
+ Enumeration type for the single target track state. Newly created tracks are
7
+ classified as `tentative` until enough evidence has been collected. Then,
8
+ the track state is changed to `confirmed`. Tracks that are no longer alive
9
+ are classified as `deleted` to mark them for removal from the set of active
10
+ tracks.
11
+
12
+ """
13
+
14
+ Tentative = 1
15
+ Confirmed = 2
16
+ Deleted = 3
17
+
18
+
19
+ class Track:
20
+ """
21
+ A single target track with state space `(x, y, a, h)` and associated
22
+ velocities, where `(x, y)` is the center of the bounding box, `a` is the
23
+ aspect ratio and `h` is the height.
24
+
25
+ Parameters
26
+ ----------
27
+ mean : ndarray
28
+ Mean vector of the initial state distribution.
29
+ covariance : ndarray
30
+ Covariance matrix of the initial state distribution.
31
+ track_id : int
32
+ A unique track identifier.
33
+ n_init : int
34
+ Number of consecutive detections before the track is confirmed. The
35
+ track state is set to `Deleted` if a miss occurs within the first
36
+ `n_init` frames.
37
+ max_age : int
38
+ The maximum number of consecutive misses before the track state is
39
+ set to `Deleted`.
40
+ feature : Optional[ndarray]
41
+ Feature vector of the detection this track originates from. If not None,
42
+ this feature is added to the `features` cache.
43
+
44
+ Attributes
45
+ ----------
46
+ mean : ndarray
47
+ Mean vector of the initial state distribution.
48
+ covariance : ndarray
49
+ Covariance matrix of the initial state distribution.
50
+ track_id : int
51
+ A unique track identifier.
52
+ hits : int
53
+ Total number of measurement updates.
54
+ age : int
55
+ Total number of frames since first occurance.
56
+ time_since_update : int
57
+ Total number of frames since last measurement update.
58
+ state : TrackState
59
+ The current track state.
60
+ features : List[ndarray]
61
+ A cache of features. On each measurement update, the associated feature
62
+ vector is added to this list.
63
+
64
+ """
65
+
66
+ def __init__(self, mean, covariance, track_id, n_init, max_age,
67
+ feature=None, cls=None, mask=None):
68
+ self.mean = mean
69
+ self.covariance = covariance
70
+ self.track_id = track_id
71
+ self.hits = 1
72
+ self.age = 1
73
+ self.time_since_update = 0
74
+
75
+ self.state = TrackState.Tentative
76
+ self.cls = cls
77
+ self.mask = mask
78
+ self.features = []
79
+ if feature is not None:
80
+ self.features.append(feature)
81
+
82
+ self._n_init = n_init
83
+ self._max_age = max_age
84
+
85
+ def to_tlwh(self):
86
+ """Get current position in bounding box format `(top left x, top left y,
87
+ width, height)`.
88
+
89
+ Returns
90
+ -------
91
+ ndarray
92
+ The bounding box.
93
+
94
+ """
95
+ ret = self.mean[:4].copy()
96
+ ret[2] *= ret[3]
97
+ ret[:2] -= ret[2:] / 2
98
+ return ret
99
+
100
+ def to_tlbr(self):
101
+ """Get current position in bounding box format `(min x, miny, max x,
102
+ max y)`.
103
+
104
+ Returns
105
+ -------
106
+ ndarray
107
+ The bounding box.
108
+
109
+ """
110
+ ret = self.to_tlwh()
111
+ ret[2:] = ret[:2] + ret[2:]
112
+ return ret
113
+
114
+ def predict(self, kf):
115
+ """Propagate the state distribution to the current time step using a
116
+ Kalman filter prediction step.
117
+
118
+ Parameters
119
+ ----------
120
+ kf : kalman_filter.KalmanFilter
121
+ The Kalman filter.
122
+
123
+ """
124
+ self.mean, self.covariance = kf.predict(self.mean, self.covariance)
125
+ self.age += 1
126
+ self.time_since_update += 1
127
+
128
+ def update(self, kf, detection):
129
+ """Perform Kalman filter measurement update step and update the feature
130
+ cache.
131
+
132
+ Parameters
133
+ ----------
134
+ kf : kalman_filter.KalmanFilter
135
+ The Kalman filter.
136
+ detection : Detection
137
+ The associated detection.
138
+
139
+ """
140
+ self.mask = detection.mask
141
+ self.mean, self.covariance = kf.update(
142
+ self.mean, self.covariance, detection.to_xyah())
143
+ self.features.append(detection.feature)
144
+
145
+ self.hits += 1
146
+ self.time_since_update = 0
147
+ if self.state == TrackState.Tentative and self.hits >= self._n_init:
148
+ self.state = TrackState.Confirmed
149
+
150
+ def mark_missed(self):
151
+ """Mark this track as missed (no association at the current time step).
152
+ """
153
+ if self.state == TrackState.Tentative:
154
+ self.state = TrackState.Deleted
155
+ elif self.time_since_update > self._max_age:
156
+ self.state = TrackState.Deleted
157
+
158
+ def is_tentative(self):
159
+ """Returns True if this track is tentative (unconfirmed).
160
+ """
161
+ return self.state == TrackState.Tentative
162
+
163
+ def is_confirmed(self):
164
+ """Returns True if this track is confirmed."""
165
+ return self.state == TrackState.Confirmed
166
+
167
+ def is_deleted(self):
168
+ """Returns True if this track is dead and should be deleted."""
169
+ return self.state == TrackState.Deleted
deep_sort/sort/tracker.py ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # vim: expandtab:ts=4:sw=4
2
+ from __future__ import absolute_import
3
+ import numpy as np
4
+ from . import kalman_filter
5
+ from . import linear_assignment
6
+ from . import iou_matching
7
+ from .track import Track
8
+
9
+
10
+ class Tracker:
11
+ """
12
+ This is the multi-target tracker.
13
+
14
+ Parameters
15
+ ----------
16
+ metric : nn_matching.NearestNeighborDistanceMetric
17
+ A distance metric for measurement-to-track association.
18
+ max_age : int
19
+ Maximum number of missed misses before a track is deleted.
20
+ n_init : int
21
+ Number of consecutive detections before the track is confirmed. The
22
+ track state is set to `Deleted` if a miss occurs within the first
23
+ `n_init` frames.
24
+
25
+ Attributes
26
+ ----------
27
+ metric : nn_matching.NearestNeighborDistanceMetric
28
+ The distance metric used for measurement to track association.
29
+ max_age : int
30
+ Maximum number of missed misses before a track is deleted.
31
+ n_init : int
32
+ Number of frames that a track remains in initialization phase.
33
+ kf : kalman_filter.KalmanFilter
34
+ A Kalman filter to filter target trajectories in image space.
35
+ tracks : List[Track]
36
+ The list of active tracks at the current time step.
37
+
38
+ """
39
+
40
+ def __init__(self, metric, max_iou_distance=0.7, max_age=70, n_init=3):
41
+ self.metric = metric
42
+ self.max_iou_distance = max_iou_distance
43
+ self.max_age = max_age
44
+ self.n_init = n_init
45
+
46
+ self.kf = kalman_filter.KalmanFilter()
47
+ self.tracks = []
48
+ self._next_id = 1
49
+
50
+ def predict(self):
51
+ """Propagate track state distributions one time step forward.
52
+
53
+ This function should be called once every time step, before `update`.
54
+ """
55
+ for track in self.tracks:
56
+ track.predict(self.kf)
57
+
58
+ def update(self, detections):
59
+ """Perform measurement update and track management.
60
+
61
+ Parameters
62
+ ----------
63
+ detections : List[deep_sort.detection.Detection]
64
+ A list of detections at the current time step.
65
+
66
+ """
67
+ # Run matching cascade.
68
+ matches, unmatched_tracks, unmatched_detections = \
69
+ self._match(detections)
70
+
71
+ # Update track set.
72
+ for track_idx, detection_idx in matches:
73
+ self.tracks[track_idx].update(
74
+ self.kf, detections[detection_idx])
75
+ for track_idx in unmatched_tracks:
76
+ self.tracks[track_idx].mark_missed()
77
+ for detection_idx in unmatched_detections:
78
+ self._initiate_track(detections[detection_idx])
79
+ self.tracks = [t for t in self.tracks if not t.is_deleted()]
80
+
81
+ # Update distance metric.
82
+ active_targets = [t.track_id for t in self.tracks if t.is_confirmed()]
83
+ features, targets = [], []
84
+ for track in self.tracks:
85
+ if not track.is_confirmed():
86
+ continue
87
+ features += track.features
88
+ targets += [track.track_id for _ in track.features]
89
+ track.features = []
90
+ self.metric.partial_fit(
91
+ np.asarray(features), np.asarray(targets), active_targets)
92
+
93
+ def _match(self, detections):
94
+
95
+ def gated_metric(tracks, dets, track_indices, detection_indices):
96
+ features = np.array([dets[i].feature for i in detection_indices])
97
+ targets = np.array([tracks[i].track_id for i in track_indices])
98
+ cost_matrix = self.metric.distance(features, targets)
99
+ cost_matrix = linear_assignment.gate_cost_matrix(
100
+ self.kf, cost_matrix, tracks, dets, track_indices,
101
+ detection_indices)
102
+
103
+ return cost_matrix
104
+
105
+ # Split track set into confirmed and unconfirmed tracks.
106
+ confirmed_tracks = [
107
+ i for i, t in enumerate(self.tracks) if t.is_confirmed()]
108
+ unconfirmed_tracks = [
109
+ i for i, t in enumerate(self.tracks) if not t.is_confirmed()]
110
+
111
+ # Associate confirmed tracks using appearance features.
112
+ matches_a, unmatched_tracks_a, unmatched_detections = \
113
+ linear_assignment.matching_cascade(
114
+ gated_metric, self.metric.matching_threshold, self.max_age,
115
+ self.tracks, detections, confirmed_tracks)
116
+
117
+ # Associate remaining tracks together with unconfirmed tracks using IOU.
118
+ iou_track_candidates = unconfirmed_tracks + [
119
+ k for k in unmatched_tracks_a if
120
+ self.tracks[k].time_since_update == 1]
121
+ unmatched_tracks_a = [
122
+ k for k in unmatched_tracks_a if
123
+ self.tracks[k].time_since_update != 1]
124
+ matches_b, unmatched_tracks_b, unmatched_detections = \
125
+ linear_assignment.min_cost_matching(
126
+ iou_matching.iou_cost, self.max_iou_distance, self.tracks,
127
+ detections, iou_track_candidates, unmatched_detections)
128
+
129
+ matches = matches_a + matches_b
130
+ unmatched_tracks = list(set(unmatched_tracks_a + unmatched_tracks_b))
131
+ return matches, unmatched_tracks, unmatched_detections
132
+
133
+ def _initiate_track(self, detection):
134
+ mean, covariance = self.kf.initiate(detection.to_xyah())
135
+ self.tracks.append(Track(
136
+ mean, covariance, self._next_id, self.n_init, self.max_age,
137
+ detection.feature, detection.cls, detection.mask))
138
+ self._next_id += 1
deepsort.py ADDED
@@ -0,0 +1,189 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import cv2
3
+ import time
4
+ import argparse
5
+ import torch
6
+ import warnings
7
+ import json
8
+ import sys
9
+
10
+ sys.path.append(os.path.join(os.path.dirname(__file__), 'thirdparty/fast-reid'))
11
+
12
+ from detector import build_detector
13
+ from deep_sort import build_tracker
14
+ from utils.draw import draw_boxes
15
+ from utils.parser import get_config
16
+ from utils.log import get_logger
17
+ from utils.io import write_results
18
+
19
+
20
+ class VideoTracker(object):
21
+ def __init__(self, cfg, args, video_path):
22
+ self.cfg = cfg
23
+ self.args = args
24
+ self.video_path = video_path
25
+ self.logger = get_logger("root")
26
+
27
+ use_cuda = args.use_cuda and torch.cuda.is_available()
28
+ if not use_cuda:
29
+ warnings.warn("Running in cpu mode which maybe very slow!", UserWarning)
30
+
31
+ if args.display:
32
+ cv2.namedWindow("test", cv2.WINDOW_NORMAL)
33
+ cv2.resizeWindow("test", args.display_width, args.display_height)
34
+
35
+ if args.cam != -1:
36
+ print("Using webcam " + str(args.cam))
37
+ self.vdo = cv2.VideoCapture(args.cam)
38
+ else:
39
+ self.vdo = cv2.VideoCapture()
40
+ self.detector = build_detector(cfg, use_cuda=use_cuda, segment=self.args.segment)
41
+ self.deepsort = build_tracker(cfg, use_cuda=use_cuda)
42
+ self.class_names = self.detector.class_names
43
+
44
+ def __enter__(self):
45
+ if self.args.cam != -1:
46
+ ret, frame = self.vdo.read()
47
+ assert ret, "Error: Camera error"
48
+ self.im_width = frame.shape[0]
49
+ self.im_height = frame.shape[1]
50
+
51
+ else:
52
+ assert os.path.isfile(self.video_path), "Path error"
53
+ self.vdo.open(self.video_path)
54
+ self.im_width = int(self.vdo.get(cv2.CAP_PROP_FRAME_WIDTH))
55
+ self.im_height = int(self.vdo.get(cv2.CAP_PROP_FRAME_HEIGHT))
56
+ assert self.vdo.isOpened()
57
+
58
+ if self.args.save_path:
59
+ os.makedirs(self.args.save_path, exist_ok=True)
60
+ # TODO save masks
61
+
62
+ # path of saved video and results
63
+ self.save_video_path = os.path.join(self.args.save_path, "results.avi")
64
+ self.save_results_path = os.path.join(self.args.save_path, "results.txt")
65
+
66
+ # create video writer
67
+ fourcc = cv2.VideoWriter_fourcc(*'MJPG')
68
+ self.writer = cv2.VideoWriter(self.save_video_path, fourcc, 20, (self.im_width, self.im_height))
69
+
70
+ # logging
71
+ self.logger.info("Save results to {}".format(self.args.save_path))
72
+
73
+ return self
74
+
75
+ def __exit__(self, exc_type, exc_value, exc_traceback):
76
+ if exc_type:
77
+ print(exc_type, exc_value, exc_traceback)
78
+
79
+ def run(self):
80
+ results = []
81
+ idx_frame = 0
82
+ with open('coco_classes.json', 'r') as f:
83
+ idx_to_class = json.load(f)
84
+ while self.vdo.grab():
85
+ idx_frame += 1
86
+ if idx_frame % self.args.frame_interval:
87
+ continue
88
+
89
+ start = time.time()
90
+ _, ori_im = self.vdo.retrieve()
91
+ im = cv2.cvtColor(ori_im, cv2.COLOR_BGR2RGB)
92
+
93
+ # do detection
94
+ if self.args.segment:
95
+ bbox_xywh, cls_conf, cls_ids, seg_masks = self.detector(im)
96
+ else:
97
+ bbox_xywh, cls_conf, cls_ids = self.detector(im)
98
+
99
+ # select person class
100
+ mask = cls_ids == 0
101
+
102
+ bbox_xywh = bbox_xywh[mask]
103
+ # bbox dilation just in case bbox too small, delete this line if using a better pedestrian detector
104
+ bbox_xywh[:, 2:] *= 1.2
105
+ cls_conf = cls_conf[mask]
106
+ cls_ids = cls_ids[mask]
107
+
108
+ # do tracking
109
+ if self.args.segment:
110
+ seg_masks = seg_masks[mask]
111
+ outputs, mask_outputs = self.deepsort.update(bbox_xywh, cls_conf, cls_ids, im, seg_masks)
112
+ else:
113
+ outputs, _ = self.deepsort.update(bbox_xywh, cls_conf, cls_ids, im)
114
+
115
+ # draw boxes for visualization
116
+ if len(outputs) > 0:
117
+ bbox_tlwh = []
118
+ bbox_xyxy = outputs[:, :4]
119
+ identities = outputs[:, -1]
120
+ cls = outputs[:, -2]
121
+ names = [idx_to_class[str(label)] for label in cls]
122
+
123
+ ori_im = draw_boxes(ori_im, bbox_xyxy, names, identities, None if not self.args.segment else mask_outputs)
124
+
125
+ for bb_xyxy in bbox_xyxy:
126
+ bbox_tlwh.append(self.deepsort._xyxy_to_tlwh(bb_xyxy))
127
+
128
+ results.append((idx_frame - 1, bbox_tlwh, identities, cls))
129
+
130
+ end = time.time()
131
+
132
+ if self.args.display:
133
+ cv2.imshow("test", ori_im)
134
+ cv2.waitKey(1)
135
+
136
+ if self.args.save_path:
137
+ self.writer.write(ori_im)
138
+
139
+ # save results
140
+ write_results(self.save_results_path, results, 'mot')
141
+
142
+ # logging
143
+ self.logger.info("time: {:.03f}s, fps: {:.03f}, detection numbers: {}, tracking numbers: {}" \
144
+ .format(end - start, 1 / (end - start), bbox_xywh.shape[0], len(outputs)))
145
+
146
+
147
+ def parse_args():
148
+ parser = argparse.ArgumentParser()
149
+ parser.add_argument("--VIDEO_PATH", type=str, default='demo.avi')
150
+ parser.add_argument("--config_mmdetection", type=str, default="./configs/mmdet.yaml")
151
+ parser.add_argument("--config_detection", type=str, default="./configs/mask_rcnn.yaml")
152
+ parser.add_argument("--config_deepsort", type=str, default="./configs/deep_sort.yaml")
153
+ parser.add_argument("--config_fastreid", type=str, default="./configs/fastreid.yaml")
154
+ parser.add_argument("--fastreid", action="store_true")
155
+ parser.add_argument("--mmdet", action="store_true")
156
+ parser.add_argument("--segment", action="store_true")
157
+ # parser.add_argument("--ignore_display", dest="display", action="store_false", default=True)
158
+ parser.add_argument("--display", action="store_true")
159
+ parser.add_argument("--frame_interval", type=int, default=1)
160
+ parser.add_argument("--display_width", type=int, default=800)
161
+ parser.add_argument("--display_height", type=int, default=600)
162
+ parser.add_argument("--save_path", type=str, default="./output/")
163
+ parser.add_argument("--cpu", dest="use_cuda", action="store_false", default=True)
164
+ parser.add_argument("--camera", action="store", dest="cam", type=int, default="-1")
165
+ return parser.parse_args()
166
+
167
+
168
+ if __name__ == "__main__":
169
+ args = parse_args()
170
+ cfg = get_config()
171
+ if args.segment:
172
+ cfg.USE_SEGMENT = True
173
+ else:
174
+ cfg.USE_SEGMENT = False
175
+ if args.mmdet:
176
+ cfg.merge_from_file(args.config_mmdetection)
177
+ cfg.USE_MMDET = True
178
+ else:
179
+ cfg.merge_from_file(args.config_detection)
180
+ cfg.USE_MMDET = False
181
+ cfg.merge_from_file(args.config_deepsort)
182
+ if args.fastreid:
183
+ cfg.merge_from_file(args.config_fastreid)
184
+ cfg.USE_FASTREID = True
185
+ else:
186
+ cfg.USE_FASTREID = False
187
+
188
+ with VideoTracker(cfg, args, video_path=args.VIDEO_PATH) as vdo_trk:
189
+ vdo_trk.run()
deepsort_new.py ADDED
@@ -0,0 +1,229 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Modified deepsort.py — Target ID recovery with IOU threshold and smooth tracking
2
+ import os
3
+ import cv2
4
+ import time
5
+ import argparse
6
+ import torch
7
+ import warnings
8
+ import json
9
+ import sys
10
+ import numpy as np
11
+
12
+ sys.path.append(os.path.join(os.path.dirname(__file__), 'thirdparty/fast-reid'))
13
+
14
+ from detector import build_detector
15
+ from deep_sort import build_tracker
16
+ from utils.draw import draw_boxes
17
+ from utils.parser import get_config
18
+ from utils.log import get_logger
19
+ from utils.io import write_results
20
+
21
+
22
+ def compute_iou(box1, box2):
23
+ if box1 is None or box2 is None:
24
+ return 0.0
25
+ xi1, yi1 = max(box1[0], box2[0]), max(box1[1], box2[1])
26
+ xi2, yi2 = min(box1[2], box2[2]), min(box1[3], box2[3])
27
+ inter_area = max(0, xi2 - xi1) * max(0, yi2 - yi1)
28
+ box1_area = (box1[2] - box1[0]) * (box1[3] - box1[1])
29
+ box2_area = (box2[2] - box2[0]) * (box2[3] - box2[1])
30
+ union = box1_area + box2_area - inter_area
31
+ return inter_area / union if union > 0 else 0.0
32
+
33
+ def get_best_iou_track(outputs, target_bbox, return_iou=False):
34
+ if target_bbox is None:
35
+ return (None, 0.0) if return_iou else None
36
+ best_iou = 0
37
+ best_id = None
38
+ for det in outputs:
39
+ x1, y1, x2, y2 = det[:4]
40
+ track_id = int(det[-1])
41
+ iou = compute_iou([x1, y1, x2, y2], target_bbox)
42
+ if iou > best_iou:
43
+ best_iou = iou
44
+ best_id = track_id
45
+ if return_iou:
46
+ return best_id, best_iou
47
+ return best_id
48
+
49
+ class VideoTracker:
50
+ def __init__(self, cfg, args, video_path):
51
+ self.cfg = cfg
52
+ self.args = args
53
+ self.video_path = video_path
54
+ self.logger = get_logger("root")
55
+ self.first_frame_flag = True
56
+ self.target_id = None
57
+ self.last_known_bbox = None
58
+
59
+ use_cuda = args.use_cuda and torch.cuda.is_available()
60
+ if not use_cuda:
61
+ warnings.warn("Running in cpu mode which maybe very slow!", UserWarning)
62
+
63
+ if args.display:
64
+ cv2.namedWindow("test", cv2.WINDOW_NORMAL)
65
+ cv2.resizeWindow("test", args.display_width, args.display_height)
66
+
67
+ if args.cam != -1:
68
+ self.vdo = cv2.VideoCapture(args.cam)
69
+ else:
70
+ self.vdo = cv2.VideoCapture(video_path)
71
+
72
+ self.detector = build_detector(cfg, use_cuda=use_cuda, segment=args.segment)
73
+ self.deepsort = build_tracker(cfg, use_cuda=use_cuda)
74
+
75
+ def run(self):
76
+ results = []
77
+ idx_frame = 0
78
+ with open('coco_classes.json', 'r') as f:
79
+ idx_to_class = json.load(f)
80
+
81
+ if not self.vdo.isOpened():
82
+ raise IOError("Failed to open video")
83
+
84
+ im_width = int(self.vdo.get(cv2.CAP_PROP_FRAME_WIDTH))
85
+ im_height = int(self.vdo.get(cv2.CAP_PROP_FRAME_HEIGHT))
86
+
87
+ if self.args.save_path:
88
+ os.makedirs(self.args.save_path, exist_ok=True)
89
+ self.writer = cv2.VideoWriter(
90
+ os.path.join(self.args.save_path, "results.avi"),
91
+ cv2.VideoWriter_fourcc(*'MJPG'),
92
+ 20, (im_width, im_height))
93
+
94
+ while self.vdo.grab():
95
+ idx_frame += 1
96
+ if idx_frame % self.args.frame_interval:
97
+ continue
98
+
99
+ _, ori_im = self.vdo.retrieve()
100
+ im = cv2.cvtColor(ori_im, cv2.COLOR_BGR2RGB)
101
+
102
+ if self.args.segment:
103
+ bbox_xywh, cls_conf, cls_ids, seg_masks = self.detector(im)
104
+ else:
105
+ bbox_xywh, cls_conf, cls_ids = self.detector(im)
106
+
107
+ mask = cls_ids == 0 # person class
108
+ bbox_xywh = bbox_xywh[mask]
109
+ cls_conf = cls_conf[mask]
110
+ cls_ids = cls_ids[mask]
111
+ if bbox_xywh.shape[0] == 0:
112
+ continue
113
+
114
+ bbox_xywh[:, 2:] *= 1.2
115
+
116
+ if self.args.segment:
117
+ seg_masks = seg_masks[mask]
118
+ outputs, mask_outputs = self.deepsort.update(bbox_xywh, cls_conf, cls_ids, im, seg_masks)
119
+ else:
120
+ outputs, _ = self.deepsort.update(bbox_xywh, cls_conf, cls_ids, im)
121
+
122
+ if self.first_frame_flag and len(outputs) > 0:
123
+ cv2.imshow("Select target", ori_im)
124
+ cv2.waitKey(1)
125
+ target_roi = cv2.selectROI("Select target", ori_im, False, False)
126
+ cv2.destroyWindow("Select target")
127
+ target_bbox = [target_roi[0], target_roi[1], target_roi[0] + target_roi[2], target_roi[1] + target_roi[3]]
128
+ self.target_id = get_best_iou_track(outputs, target_bbox)
129
+ self.last_known_bbox = target_bbox
130
+ print(f"[INFO] Selected target ID: {self.target_id}")
131
+ self.first_frame_flag = False
132
+ continue
133
+
134
+ bbox_tlwh = []
135
+ filtered_outputs = []
136
+ for det in outputs:
137
+ if int(det[-1]) == self.target_id:
138
+ filtered_outputs.append(det)
139
+ self.last_known_bbox = det[:4]
140
+
141
+ if len(filtered_outputs) == 0 and self.last_known_bbox is not None:
142
+ new_id, best_iou = get_best_iou_track(outputs, self.last_known_bbox, return_iou=True)
143
+ if best_iou > 0.4:
144
+ self.target_id = new_id
145
+ print(f"[INFO] Target temporarily lost. Reassigned to ID {self.target_id} (IOU={best_iou:.2f})")
146
+ for det in outputs:
147
+ if int(det[-1]) == self.target_id:
148
+ filtered_outputs.append(det)
149
+ self.last_known_bbox = det[:4]
150
+ else:
151
+ print("[INFO] IOU too low to reassign. Skipping reassignment.")
152
+
153
+ if len(filtered_outputs) > 0:
154
+ def box_center(box):
155
+ return np.array([(box[0] + box[2]) / 2, (box[1] + box[3]) / 2])
156
+
157
+ smoothed_outputs = []
158
+ for det in filtered_outputs:
159
+ if self.last_known_bbox is None:
160
+ smoothed_outputs.append(det)
161
+ continue
162
+ dist = np.linalg.norm(box_center(det[:4]) - box_center(self.last_known_bbox))
163
+ if dist < 300:
164
+ smoothed_outputs.append(det)
165
+ else:
166
+ print(f"[INFO] Skipped jumpy box with dist={dist:.2f}")
167
+
168
+ if len(smoothed_outputs) > 0:
169
+ bbox_xyxy = np.array([det[:4] for det in smoothed_outputs])
170
+ identities = [int(det[-1]) for det in smoothed_outputs]
171
+ cls = [int(det[-2]) for det in smoothed_outputs]
172
+ names = [idx_to_class[str(label)] for label in cls]
173
+
174
+ ori_im = draw_boxes(ori_im, bbox_xyxy, names, identities)
175
+
176
+ for box in bbox_xyxy:
177
+ bbox_tlwh.append(self.deepsort._xyxy_to_tlwh(box))
178
+
179
+ results.append((idx_frame - 1, bbox_tlwh, identities, cls))
180
+
181
+ if self.args.display:
182
+ cv2.imshow("test", ori_im)
183
+ if cv2.waitKey(1) & 0xFF == ord('q'):
184
+ break
185
+
186
+ if self.args.save_path:
187
+ self.writer.write(ori_im)
188
+
189
+ if self.args.save_path:
190
+ write_results(os.path.join(self.args.save_path, "results.txt"), results, 'mot')
191
+
192
+ self.vdo.release()
193
+ if self.args.display:
194
+ cv2.destroyAllWindows()
195
+
196
+ def parse_args():
197
+ parser = argparse.ArgumentParser()
198
+ parser.add_argument("--VIDEO_PATH", type=str, default="demo.avi")
199
+ parser.add_argument("--config_mmdetection", type=str, default="./configs/mmdet.yaml")
200
+ parser.add_argument("--config_detection", type=str, default="./configs/mask_rcnn.yaml")
201
+ parser.add_argument("--config_deepsort", type=str, default="./configs/deep_sort.yaml")
202
+ parser.add_argument("--config_fastreid", type=str, default="./configs/fastreid.yaml")
203
+ parser.add_argument("--fastreid", action="store_true")
204
+ parser.add_argument("--mmdet", action="store_true")
205
+ parser.add_argument("--segment", action="store_true")
206
+ parser.add_argument("--display", action="store_true")
207
+ parser.add_argument("--frame_interval", type=int, default=1)
208
+ parser.add_argument("--display_width", type=int, default=800)
209
+ parser.add_argument("--display_height", type=int, default=600)
210
+ parser.add_argument("--save_path", type=str, default="./output/")
211
+ parser.add_argument("--cpu", dest="use_cuda", action="store_false", default=True)
212
+ parser.add_argument("--camera", action="store", dest="cam", type=int, default="-1")
213
+ return parser.parse_args()
214
+
215
+ if __name__ == "__main__":
216
+ args = parse_args()
217
+ cfg = get_config()
218
+
219
+ cfg.USE_SEGMENT = args.segment
220
+ cfg.USE_MMDET = args.mmdet
221
+ cfg.USE_FASTREID = args.fastreid
222
+
223
+ cfg.merge_from_file(args.config_mmdetection if args.mmdet else args.config_detection)
224
+ cfg.merge_from_file(args.config_deepsort)
225
+ if args.fastreid:
226
+ cfg.merge_from_file(args.config_fastreid)
227
+
228
+ tracker = VideoTracker(cfg, args, video_path=args.VIDEO_PATH)
229
+ tracker.run()
demo/1.jpg ADDED

Git LFS Details

  • SHA256: 3aa029de627b124bc9b25473994ca6fd915f8ee4cea3bfff0f85096eeda562c2
  • Pointer size: 131 Bytes
  • Size of remote file: 254 kB
demo/2.jpg ADDED

Git LFS Details

  • SHA256: 7a87401b28b189ee6397a2aa964b621774246344a31849ac9fcce6ea61613918
  • Pointer size: 131 Bytes
  • Size of remote file: 282 kB
demo/demo.gif ADDED

Git LFS Details

  • SHA256: fbafb71266180efb6159d3b13e822a34dfba2824e28a9f8b83700c8d3372576a
  • Pointer size: 132 Bytes
  • Size of remote file: 5.49 MB
demo/demo2.gif ADDED

Git LFS Details

  • SHA256: 9dfa3cecfa13cc984d3c58b37484c0480e07eeeaa259f0bd521f55176981a357
  • Pointer size: 132 Bytes
  • Size of remote file: 4.02 MB
detector/MMDet/__init__.py ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ from .detector import MMDet
2
+ __all__ = ['MMDet']
detector/MMDet/detector.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ import numpy as np
3
+ import torch
4
+
5
+ from mmdet.apis import init_detector, inference_detector
6
+ from .mmdet_utils import xyxy_to_xywh
7
+
8
+
9
+ class MMDet(object):
10
+ def __init__(self, cfg_file, checkpoint_file, score_thresh=0.7,
11
+ is_xywh=False, use_cuda=True):
12
+ # net definition
13
+ self.device = "cuda" if use_cuda else "cpu"
14
+ self.net = init_detector(cfg_file, checkpoint_file, device=self.device)
15
+ logger = logging.getLogger("root.detector")
16
+ logger.info('Loading weights from %s... Done!' % (checkpoint_file))
17
+
18
+ #constants
19
+ self.score_thresh = score_thresh
20
+ self.use_cuda = use_cuda
21
+ self.is_xywh = is_xywh
22
+ self.class_names = self.net.CLASSES
23
+ self.num_classes = len(self.class_names)
24
+
25
+ def __call__(self, ori_img):
26
+ # forward
27
+ bbox_result = inference_detector(self.net, ori_img)
28
+ bboxes = np.vstack(bbox_result)
29
+
30
+ if len(bboxes) == 0:
31
+ bbox = np.array([]).reshape([0, 4])
32
+ cls_conf = np.array([])
33
+ cls_ids = np.array([])
34
+ return bbox, cls_conf, cls_ids
35
+
36
+ bbox = bboxes[:, :4]
37
+ cls_conf = bboxes[:, 4]
38
+ cls_ids = [
39
+ np.full(bbox.shape[0], i, dtype=np.int32)
40
+ for i, bbox in enumerate(bbox_result)
41
+ ]
42
+ cls_ids = np.concatenate(cls_ids)
43
+
44
+ selected_idx = cls_conf > self.score_thresh
45
+ bbox = bbox[selected_idx, :]
46
+ cls_conf = cls_conf[selected_idx]
47
+ cls_ids = cls_ids[selected_idx]
48
+
49
+ if self.is_xywh:
50
+ bbox = xyxy_to_xywh(bbox)
51
+
52
+ return bbox, cls_conf, cls_ids