# Deep Sort with PyTorch ![](demo/demo.gif) ## Update(1-1-2020) Changes - fix bugs - refactor code - accerate detection by adding nms on gpu ## Update(07-22) Changes - bug fix (Thanks @JieChen91 and @yingsen1 for bug reporting). - using batch for feature extracting for each frame, which lead to a small speed up. - code improvement. Futher improvement direction - Train detector on specific dataset rather than the official one. - Retrain REID model on pedestrain dataset for better performance. - Replace YOLOv3 detector with advanced ones. ## Update(23-05-2024) ### tracking - Added resnet network to the appearance feature extraction network in the deep folder - Fixed the NMS bug in the `preprocessing.py` and also fixed covariance calculation bug in the `kalmen_filter.py` in the sort folder ### detecting - Added YOLOv5 detector, aligned interface, and added YOLOv5 related yaml configuration files. Codes references this repo: [YOLOv5-v6.1](https://github.com/ultralytics/yolov5/tree/v6.1). - The `train.py`, `val.py` and `detect.py` in the original YOLOv5 were deleted. This repo only need **yolov5x.pt**. ### deepsort - Added tracking target category, which can display both category and tracking ID simultaneously. ## Update(28-05-2024) ### segmentation * Added Mask RCNN instance segmentation model. Codes references this repo: [mask_rcnn](https://github.com/WZMIAOMIAO/deep-learning-for-image-processing/tree/master/pytorch_object_detection/mask_rcnn). Visual result saved in `demo/demo2.gif`. * Similar to YOLOv5, `train.py`, `validation.py` and `predict.py` were deleted. This repo only need **maskrcnn_resnet50_fpn_coco.pth**. ### deepsort - Added tracking target mask, which can display both category, tracking ID and target mask simultaneously. ## latest Update(09-06-2024) ### feature extraction network * Using `nn.parallel.DistributedDataParallel` in PyTorch to support multiple GPUs training. * Added [GETTING_STARTED.md](deep_sort/deep/GETTING_STARTED.md) for better using `train.py` and `train_multiGPU.py`. Updated `README.md` for previously updated content(#Update(23-05-2024) and #Update(28-05-2024)). **Any contributions to this repository is welcome!** ## Introduction This is an implement of MOT tracking algorithm deep sort. Deep sort is basicly the same with sort but added a CNN model to extract features in image of human part bounded by a detector. This CNN model is indeed a RE-ID model and the detector used in [PAPER](https://arxiv.org/abs/1703.07402) is FasterRCNN , and the original source code is [HERE](https://github.com/nwojke/deep_sort). However in original code, the CNN model is implemented with tensorflow, which I'm not familier with. SO I re-implemented the CNN feature extraction model with PyTorch, and changed the CNN model a little bit. Also, I use **YOLOv3** to generate bboxes instead of FasterRCNN. ## Dependencies - python 3 **(python2 not sure)** - numpy - scipy - opencv-python - sklearn - torch >= 1.9 - torchvision >= 0.13 - pillow - vizer - edict - matplotlib - pycocotools - tqdm ## Quick Start 0. Check all dependencies installed ```bash pip install -r requirements.txt ``` for user in china, you can specify pypi source to accelerate install like: ```bash pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple ``` 1. Clone this repository ```bash git clone git@github.com:ZQPei/deep_sort_pytorch.git ``` 2. Download detector parameters ```bash # if you use YOLOv3 as detector in this repo cd detector/YOLOv3/weight/ wget https://pjreddie.com/media/files/yolov3.weights wget https://pjreddie.com/media/files/yolov3-tiny.weights cd ../../../ # if you use YOLOv5 as detector in this repo cd detector/YOLOv5 wget https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5s.pt or wget https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5m.pt cd ../../ # if you use Mask RCNN as detector in this repo cd detector/Mask_RCNN/save_weights wget https://download.pytorch.org/models/maskrcnn_resnet50_fpn_coco-bf2d0c1e.pth cd ../../../ ``` 3. Download deepsort feature extraction networks weight ```bash # if you use original model in PAPER cd deep_sort/deep/checkpoint # download ckpt.t7 from https://drive.google.com/drive/folders/1xhG0kRH1EX5B9_Iz8gQJb7UNnn_riXi6 to this folder cd ../../../ # if you use resnet18 in this repo cd deep_sort/deep/checkpoint wget https://download.pytorch.org/models/resnet18-5c106cde.pth cd ../../../ ``` 4. **(Optional)** Compile nms module if you use YOLOv3 as detetor in this repo ```bash cd detector/YOLOv3/nms sh build.sh cd ../../.. ``` Notice: If compiling failed, the simplist way is to **Upgrade your pytorch >= 1.1 and torchvision >= 0.3" and you can avoid the troublesome compiling problems which are most likely caused by either `gcc version too low` or `libraries missing`. 5. **(Optional)** Prepare third party submodules [fast-reid](https://github.com/JDAI-CV/fast-reid) This library supports bagtricks, AGW and other mainstream ReID methods through providing an fast-reid adapter. to prepare our bundled fast-reid, then follow instructions in its README to install it. Please refer to `configs/fastreid.yaml` for a sample of using fast-reid. See [Model Zoo](https://github.com/JDAI-CV/fast-reid/blob/master/docs/MODEL_ZOO.md) for available methods and trained models. [MMDetection](https://github.com/open-mmlab/mmdetection) This library supports Faster R-CNN and other mainstream detection methods through providing an MMDetection adapter. to prepare our bundled MMDetection, then follow instructions in its README to install it. Please refer to `configs/mmdet.yaml` for a sample of using MMDetection. See [Model Zoo](https://github.com/open-mmlab/mmdetection/blob/master/docs/model_zoo.md) for available methods and trained models. Run ``` git submodule update --init --recursive ``` 6. Run demo ```bash usage: deepsort.py [-h] [--fastreid] [--config_fastreid CONFIG_FASTREID] [--mmdet] [--config_mmdetection CONFIG_MMDETECTION] [--config_detection CONFIG_DETECTION] [--config_deepsort CONFIG_DEEPSORT] [--display] [--frame_interval FRAME_INTERVAL] [--display_width DISPLAY_WIDTH] [--display_height DISPLAY_HEIGHT] [--save_path SAVE_PATH] [--cpu] [--camera CAM] VIDEO_PATH # yolov3 + deepsort python deepsort.py [VIDEO_PATH] --config_detection ./configs/yolov3.yaml # yolov3_tiny + deepsort python deepsort.py [VIDEO_PATH] --config_detection ./configs/yolov3_tiny.yaml # yolov3 + deepsort on webcam python3 deepsort.py /dev/video0 --camera 0 # yolov3_tiny + deepsort on webcam python3 deepsort.py /dev/video0 --config_detection ./configs/yolov3_tiny.yaml --camera 0 # yolov5s + deepsort python deepsort.py [VIDEO_PATH] --config_detection ./configs/yolov5s.yaml # yolov5m + deepsort python deepsort.py [VIDEO_PATH] --config_detection ./configs/yolov5m.yaml # mask_rcnn + deepsort python deepsort.py [VIDEO_PATH] --config_detection ./configs/mask_rcnn.yaml --segment # fast-reid + deepsort python deepsort.py [VIDEO_PATH] --fastreid [--config_fastreid ./configs/fastreid.yaml] # MMDetection + deepsort python deepsort.py [VIDEO_PATH] --mmdet [--config_mmdetection ./configs/mmdet.yaml] ``` Use `--display` to enable display image per frame. Results will be saved to `./output/results.avi` and `./output/results.txt`. All files above can also be accessed from BaiduDisk! linker:[BaiduDisk](https://pan.baidu.com/s/1YJ1iPpdFTlUyLFoonYvozg) passwd:fbuw ## Training the RE-ID model Check [GETTING_STARTED.md](deep_sort/deep/GETTING_STARTED.md) to start training progress using standard benchmark or **customized dataset**. ## Demo videos and images [demo.avi](https://drive.google.com/drive/folders/1xhG0kRH1EX5B9_Iz8gQJb7UNnn_riXi6) [demo2.avi](https://drive.google.com/drive/folders/1xhG0kRH1EX5B9_Iz8gQJb7UNnn_riXi6) ![1.jpg](demo/1.jpg) ![2.jpg](demo/2.jpg) ## References - paper: [Simple Online and Realtime Tracking with a Deep Association Metric](https://arxiv.org/abs/1703.07402) - code: [nwojke/deep_sort](https://github.com/nwojke/deep_sort) - paper: [YOLOv3: An Incremental Improvement](https://pjreddie.com/media/files/papers/YOLOv3.pdf) - code: [Joseph Redmon/yolov3](https://pjreddie.com/darknet/yolo/) - paper: [Mask R-CNN](https://arxiv.org/pdf/1703.06870) - code: [WZMIAOMIAO/Mask R-CNN](https://github.com/WZMIAOMIAO/deep-learning-for-image-processing/tree/master/pytorch_object_detection/mask_rcnn) - paper: [YOLOv5](https://github.com/ultralytics/yolov5) - code: [ultralytics/yolov5](https://github.com/ultralytics/yolov5/tree/v6.1)