Datasets:
Tags:
speech-modeling
License:
Fix data to allow .shuffle()
Browse files
NPSC.py
CHANGED
|
@@ -21,7 +21,6 @@ import json
|
|
| 21 |
import tarfile
|
| 22 |
import datasets
|
| 23 |
from datasets.tasks import AutomaticSpeechRecognition
|
| 24 |
-
from datasets.utils.streaming_download_manager import xopen
|
| 25 |
|
| 26 |
|
| 27 |
_CITATION = """\
|
|
@@ -115,60 +114,50 @@ class Npsc(datasets.GeneratorBasedBuilder):
|
|
| 115 |
def _split_generators(self, dl_manager):
|
| 116 |
"""Returns SplitGenerators."""
|
| 117 |
data_urls = {}
|
| 118 |
-
metadata_urls = {}
|
| 119 |
config_name = self.config.name
|
| 120 |
for split in ["train", "eval", "test"]:
|
| 121 |
-
metadata_urls[split] = []
|
| 122 |
data_urls[split] = []
|
| 123 |
for shard in _SHARDS[split]:
|
| 124 |
-
|
| 125 |
-
_METADATA_URL.format(split=split, shard=shard)
|
| 126 |
-
]
|
| 127 |
-
data_urls[split] += [
|
| 128 |
_DATA_URL.format(split=split, shard=shard, config=config_name)
|
| 129 |
-
]
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
train_downloaded_archives = dl_manager.download(data_urls["train"])
|
| 134 |
-
validation_downloaded_archives = dl_manager.download(data_urls["eval"])
|
| 135 |
-
test_downloaded_archives = dl_manager.download(data_urls["test"])
|
| 136 |
|
| 137 |
return [
|
| 138 |
datasets.SplitGenerator(
|
| 139 |
name=datasets.Split.TRAIN, gen_kwargs={
|
| 140 |
-
"
|
| 141 |
-
"metadata_paths": train_downloaded_metadata,
|
| 142 |
}
|
| 143 |
),
|
| 144 |
datasets.SplitGenerator(
|
| 145 |
name=datasets.Split.VALIDATION, gen_kwargs={
|
| 146 |
-
"
|
| 147 |
-
"metadata_paths": validation_downloaded_metadata,
|
| 148 |
}
|
| 149 |
),
|
| 150 |
datasets.SplitGenerator(
|
| 151 |
name=datasets.Split.TEST, gen_kwargs={
|
| 152 |
-
"
|
| 153 |
-
"metadata_paths": test_downloaded_metadata,
|
| 154 |
}
|
| 155 |
),
|
| 156 |
]
|
| 157 |
|
| 158 |
-
def _generate_examples(self,
|
| 159 |
"""Yields examples."""
|
| 160 |
data_fields = list(self._info().features.keys())
|
| 161 |
data_fields.remove("audio")
|
| 162 |
-
for
|
| 163 |
metadata = {}
|
| 164 |
-
with
|
| 165 |
for line in metadata_file.read().split("\n"):
|
| 166 |
if line:
|
| 167 |
metadata_object = json.loads(line)
|
| 168 |
if "path" in metadata_object:
|
| 169 |
metadata_key = metadata_object["path"].split("/", 1)[-1]
|
| 170 |
metadata[metadata_key] = metadata_object
|
| 171 |
-
with
|
| 172 |
archive_bytes = io.BytesIO(archive_fs.read())
|
| 173 |
with tarfile.open(fileobj=archive_bytes, mode="r") as tar:
|
| 174 |
for audio_file in tar.getmembers():
|
|
|
|
| 21 |
import tarfile
|
| 22 |
import datasets
|
| 23 |
from datasets.tasks import AutomaticSpeechRecognition
|
|
|
|
| 24 |
|
| 25 |
|
| 26 |
_CITATION = """\
|
|
|
|
| 114 |
def _split_generators(self, dl_manager):
|
| 115 |
"""Returns SplitGenerators."""
|
| 116 |
data_urls = {}
|
|
|
|
| 117 |
config_name = self.config.name
|
| 118 |
for split in ["train", "eval", "test"]:
|
|
|
|
| 119 |
data_urls[split] = []
|
| 120 |
for shard in _SHARDS[split]:
|
| 121 |
+
data_urls[split] += [(
|
| 122 |
+
_METADATA_URL.format(split=split, shard=shard),
|
|
|
|
|
|
|
| 123 |
_DATA_URL.format(split=split, shard=shard, config=config_name)
|
| 124 |
+
)]
|
| 125 |
+
train_downloaded_data = dl_manager.download(data_urls["train"])
|
| 126 |
+
validation_downloaded_data = dl_manager.download(data_urls["eval"])
|
| 127 |
+
test_downloaded_data = dl_manager.download(data_urls["test"])
|
|
|
|
|
|
|
|
|
|
| 128 |
|
| 129 |
return [
|
| 130 |
datasets.SplitGenerator(
|
| 131 |
name=datasets.Split.TRAIN, gen_kwargs={
|
| 132 |
+
"filepaths": train_downloaded_data,
|
|
|
|
| 133 |
}
|
| 134 |
),
|
| 135 |
datasets.SplitGenerator(
|
| 136 |
name=datasets.Split.VALIDATION, gen_kwargs={
|
| 137 |
+
"filepaths": validation_downloaded_data,
|
|
|
|
| 138 |
}
|
| 139 |
),
|
| 140 |
datasets.SplitGenerator(
|
| 141 |
name=datasets.Split.TEST, gen_kwargs={
|
| 142 |
+
"filepaths": test_downloaded_data,
|
|
|
|
| 143 |
}
|
| 144 |
),
|
| 145 |
]
|
| 146 |
|
| 147 |
+
def _generate_examples(self, filepaths):
|
| 148 |
"""Yields examples."""
|
| 149 |
data_fields = list(self._info().features.keys())
|
| 150 |
data_fields.remove("audio")
|
| 151 |
+
for metadata_path, archive_path in filepaths:
|
| 152 |
metadata = {}
|
| 153 |
+
with open(metadata_path) as metadata_file:
|
| 154 |
for line in metadata_file.read().split("\n"):
|
| 155 |
if line:
|
| 156 |
metadata_object = json.loads(line)
|
| 157 |
if "path" in metadata_object:
|
| 158 |
metadata_key = metadata_object["path"].split("/", 1)[-1]
|
| 159 |
metadata[metadata_key] = metadata_object
|
| 160 |
+
with open(archive_path, "rb") as archive_fs:
|
| 161 |
archive_bytes = io.BytesIO(archive_fs.read())
|
| 162 |
with tarfile.open(fileobj=archive_bytes, mode="r") as tar:
|
| 163 |
for audio_file in tar.getmembers():
|