Datasets:
Formats:
parquet
Size:
10K - 100K
File size: 9,380 Bytes
424b75d da8bb7b 3e6101e da8bb7b 424b75d da8bb7b 3df0b5f da8bb7b d8dfcc3 c117751 b74b7af da8bb7b c3fec81 3df0b5f da8bb7b 3df0b5f 4801cd2 3df0b5f 4801cd2 3df0b5f da8bb7b f1a5ca1 3df0b5f da8bb7b 3df0b5f da8bb7b 3df0b5f da8bb7b 2df3314 da8bb7b 3df0b5f da8bb7b 3df0b5f da8bb7b 3df0b5f a3ee323 2df3314 da8bb7b 2df3314 3df0b5f 504337b 3df0b5f 504337b 3df0b5f 504337b 2df3314 3df0b5f 2df3314 504337b 3df0b5f 2df3314 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
---
dataset_info:
features:
- name: audio
dtype: audio
- name: transcription
dtype: string
splits:
- name: train
num_bytes: 11189910118.05
num_examples: 50715
- name: validation
num_bytes: 385055065.35
num_examples: 2199
download_size: 11017987865
dataset_size: 11574965183.4
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
tags:
- masrispeech
- egyptian-arabic
- arabic
- speech
- audio
- asr
- automatic-speech-recognition
- speech-to-text
- stt
- dialectal-arabic
- egypt
- native-speakers
- spoken-arabic
- egyptian-dialect
- arabic-dialect
- audio-dataset
- language-resources
- low-resource-language
- phonetics
- speech-corpus
- voice
- transcription
- linguistic-data
- machine-learning
- natural-language-processing
- nlp
- huggingface
- open-dataset
- labeled-data
task_categories:
- automatic-speech-recognition
- audio-classification
- audio-to-audio
language:
- arz
- ar
pretty_name: MasriSpeech-Full
---
# ๐ฃ๏ธ MasriSpeech-Full: Large-Scale Egyptian Arabic Speech Corpus
[](https://opensource.org/licenses/Apache-2.0)
[](https://huggingface.co/collections/NightPrince/masrispeech-dataset-68594e59e46fd12c723f1544)
<p align="center">
<img src="https://github.com/NightPrinceY/Helmet-V8/blob/main/MasriSpeech.png?raw=true"
alt="MasriSpeech-Full Dataset Overview"
width="600"
height="750"
style="border-radius: 8px; box-shadow: 0 4px 12px rgba(0,0,0,0.1); object-fit: cover; object-position: top;">
</p>
## ๐ Overview
**MasriSpeech-Full** is the largest open-source Egyptian Arabic (Masri) speech dataset, designed to advance Automatic Speech Recognition (ASR) and speech processing research for dialectal Arabic. This corpus contains 52,914 professionally annotated audio samples totaling over 3,100 hours of natural Egyptian Arabic speech.
> ๐ก **Key Features**:
> - High-quality 16kHz speech recordings
> - Natural conversational Egyptian Arabic
> - Speaker-balanced train/validation splits
> - Comprehensive linguistic coverage
> - Apache 2.0 license
## ๐ Dataset Summary
| Feature | Value |
|--------------------------|---------------------------|
| **Total Samples** | 52,914 |
| **Train Samples** | 50,715 |
| **Validation Samples** | 2,199 |
| **Sampling Rate** | 16 kHz |
| **Total Duration** | ~3,100 hours |
| **Languages** | Egyptian Arabic (arz), Arabic (ar) |
| **Format** | Parquet |
| **Dataset Size** | 11.57 GB |
| **Download Size** | 10.26 GB |
| **Annotations** | Transcripts |
## ๐งฑ Dataset Structure
The dataset follows Hugging Face `datasets` format with two splits:
```python
DatasetDict({
train: Dataset({
features: ['audio', 'transcription'],
num_rows: 50715
})
validation: Dataset({
features: ['audio', 'transcription'],
num_rows: 2199
})
})
```
## Data Fields
- **audio**: Audio feature object containing:
- `Array`: Raw speech waveform (1D float array)
- `Path`: Relative audio path
- `Sampling_rate`: 16,000 Hz
- **transcription**: string with Egyptian Arabic transcription
## ๐ Data Statistics
### Split Distribution
| Split | Examples | Size (GB) | Avg. Words | Empty | Non-Arabic |
|--------------|----------|-----------|------------|-------|------------|
| **Train** | 50,715 | 10.42 | 13.34 | 6 | 13 |
| **Validation**| 2,199 | 0.36 | 9.60 | 0 | 1 |
### Linguistic Analysis
| Feature | Train Set | Validation Set |
|-----------------|---------------------------|----------------------------|
| **Top Words** | ูู (20,250), ู (16,977) | ูู (519), ุฃูุง (412) |
| **Top Bigrams** | (ุฅู, ุฃูุง) (1,305) | (ุดุงุก, ุงููู) (63) |
| **Vocab Size** | 38,451 | 7,892 |
| **Unique Speakers** | 1,142 | 98 |
<p align="center">
<img src="https://github.com/NightPrinceY/Helmet-V8/blob/main/train_wordcount_hist.png?raw=true" alt="Train Distribution" width="45%">
<img src="https://github.com/NightPrinceY/Helmet-V8/blob/main/adapt_wordcount_hist.png?raw=true" alt="Validation Distribution" width="45%">
<br><em>Word Count Distributions (Left: Train, Right: Validation)</em>
</p>
## How to Use ? ๐งโ๐ป
### Loading with Hugging Face
```python
from datasets import load_dataset
import IPython.display as ipd
# Load dataset (streaming recommended for large datasets)
ds = load_dataset('NightPrince/MasriSpeech-Full',
split='train',
streaming=True)
# Get first sample
sample = next(iter(ds))
print(f"Transcript: {sample['transcription']}")
# Play audio
ipd.Audio(sample['audio']['array'],
rate=sample['audio']['sampling_rate'])
```
### Preprocessing the Dataset
```python
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
from datasets import load_dataset
import torch
model_name = "facebook/wav2vec2-base-960h" # Spanish example
# or "facebook/wav2vec2-large-xlsr-53-en" for English
processor = Wav2Vec2Processor.from_pretrained(model_name)
model = Wav2Vec2ForCTC.from_pretrained(model_name)
def prepare_dataset(batch):
audio = batch["audio"]
# Extract audio array and sampling rate
audio_array = audio["array"]
sampling_rate = audio["sampling_rate"]
# Process audio using feature extractor only
inputs = processor.feature_extractor(
audio_array,
sampling_rate=sampling_rate,
return_tensors="pt"
)
batch["input_values"] = inputs.input_values[0]
# Process transcription using tokenizer only
labels = processor.tokenizer(
batch["transcription"],
return_tensors="pt"
)
batch["labels"] = labels["input_ids"][0]
return batch
# Apply preprocessing to the entire dataset
print("Processing entire dataset...")
dataset = ds.map(prepare_dataset, remove_columns=["audio", "transcription"])
```
### Fine-Tuning an ASR Model
```python
from transformers import AutoModelForCTC, TrainingArguments, Trainer
# Load pre-trained model
model = AutoModelForCTC.from_pretrained("facebook/wav2vec2-base-960h")
# Define training arguments
training_args = TrainingArguments(
output_dir="./results",
evaluation_strategy="epoch",
learning_rate=2e-5,
per_device_train_batch_size=16,
num_train_epochs=3,
save_steps=10,
save_total_limit=2,
logging_dir="./logs",
logging_steps=10,
)
# Initialize Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=dataset,
eval_dataset=dataset,
)
# Train the model
trainer.train()
```
### Evaluating the Model
```python
# Evaluate the model
eval_results = trainer.evaluate()
print("Evaluation Results:", eval_results)
```
### Exporting the Model
```python
# Save the fine-tuned model
model.save_pretrained("./fine_tuned_model")
processor.save_pretrained("./fine_tuned_model")
```
## ๐ Citation
If you use **MasriSpeech-Full** in your research or work, please cite it as follows:
```
@dataset{masrispeech_full,
author = {Yahya Muhammad Alnwsany},
title = {MasriSpeech-Full: Large-Scale Egyptian Arabic Speech Corpus},
year = {2025},
publisher = {Hugging Face},
url = {https://huggingface.co/collections/NightPrince/masrispeech-dataset-68594e59e46fd12c723f1544}
}
```
## ๐ Licensing
This dataset is released under the **Apache 2.0 License**. You are free to use, modify, and distribute the dataset, provided you comply with the terms of the license. For more details, see the [LICENSE](https://opensource.org/licenses/Apache-2.0).
## ๐ Acknowledgments
We would like to thank the following for their contributions and support:
- **Annotators**: For their meticulous work in creating high-quality transcriptions.
- **Hugging Face**: For providing tools and hosting the dataset.
- **Open-Source Community**: For their continuous support and feedback.
## ๐ก Use Cases
**MasriSpeech-Full** can be used in various applications, including:
- Automatic Speech Recognition (ASR) for Egyptian Arabic.
- Dialectal Arabic linguistic research.
- Speech synthesis and voice cloning.
- Training and benchmarking machine learning models for low-resource languages.
## ๐ค Contributing
We welcome contributions to improve **MasriSpeech-Full**. If you have suggestions, find issues, or want to add new features, please:
1. Fork the repository.
2. Create a new branch for your changes.
3. Submit a pull request with a detailed description of your changes.
For questions or feedback, feel free to contact the maintainer.
## ๐ Changelog
### [1.0.0] - 2025-08-02
- Initial release of **MasriSpeech-Full**.
- Includes 52,914 audio samples with transcriptions.
- Train/validation splits provided.
- Dataset hosted on Hugging Face. |