File size: 9,380 Bytes
424b75d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da8bb7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e6101e
da8bb7b
 
424b75d
da8bb7b
 
3df0b5f
 
 
 
da8bb7b
 
d8dfcc3
c117751
b74b7af
 
 
da8bb7b
c3fec81
3df0b5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da8bb7b
3df0b5f
 
 
 
 
 
 
 
 
 
 
4801cd2
3df0b5f
 
 
 
 
 
 
4801cd2
3df0b5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da8bb7b
 
f1a5ca1
 
3df0b5f
da8bb7b
 
 
3df0b5f
da8bb7b
3df0b5f
da8bb7b
 
2df3314
da8bb7b
3df0b5f
 
 
 
da8bb7b
3df0b5f
 
 
da8bb7b
3df0b5f
 
 
a3ee323
 
 
2df3314
da8bb7b
2df3314
3df0b5f
504337b
 
 
 
 
 
 
3df0b5f
 
 
504337b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3df0b5f
 
504337b
 
 
2df3314
3df0b5f
2df3314
 
 
 
 
504337b
3df0b5f
2df3314
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
---
dataset_info:
  features:
  - name: audio
    dtype: audio
  - name: transcription
    dtype: string
  splits:
  - name: train
    num_bytes: 11189910118.05
    num_examples: 50715
  - name: validation
    num_bytes: 385055065.35
    num_examples: 2199
  download_size: 11017987865
  dataset_size: 11574965183.4
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: validation
    path: data/validation-*
tags:
- masrispeech
- egyptian-arabic
- arabic
- speech
- audio
- asr
- automatic-speech-recognition
- speech-to-text
- stt
- dialectal-arabic
- egypt
- native-speakers
- spoken-arabic
- egyptian-dialect
- arabic-dialect
- audio-dataset
- language-resources
- low-resource-language
- phonetics
- speech-corpus
- voice
- transcription
- linguistic-data
- machine-learning
- natural-language-processing
- nlp
- huggingface
- open-dataset
- labeled-data
task_categories:
- automatic-speech-recognition
- audio-classification
- audio-to-audio
language:
- arz
- ar
pretty_name: MasriSpeech-Full
---


# ๐Ÿ—ฃ๏ธ MasriSpeech-Full: Large-Scale Egyptian Arabic Speech Corpus

[![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://opensource.org/licenses/Apache-2.0)
[![Hugging Face](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Dataset-blue)](https://huggingface.co/collections/NightPrince/masrispeech-dataset-68594e59e46fd12c723f1544)

<p align="center">
  <img src="https://github.com/NightPrinceY/Helmet-V8/blob/main/MasriSpeech.png?raw=true" 
       alt="MasriSpeech-Full Dataset Overview" 
       width="600" 
       height="750"
       style="border-radius: 8px; box-shadow: 0 4px 12px rgba(0,0,0,0.1); object-fit: cover; object-position: top;">
</p>

## ๐ŸŒ Overview
**MasriSpeech-Full** is the largest open-source Egyptian Arabic (Masri) speech dataset, designed to advance Automatic Speech Recognition (ASR) and speech processing research for dialectal Arabic. This corpus contains 52,914 professionally annotated audio samples totaling over 3,100 hours of natural Egyptian Arabic speech.

> ๐Ÿ’ก **Key Features**:
> - High-quality 16kHz speech recordings
> - Natural conversational Egyptian Arabic
> - Speaker-balanced train/validation splits
> - Comprehensive linguistic coverage
> - Apache 2.0 license

## ๐Ÿ“Š Dataset Summary

| Feature                  | Value                     |
|--------------------------|---------------------------|
| **Total Samples**        | 52,914                   |
| **Train Samples**        | 50,715                   |
| **Validation Samples**   | 2,199                    |
| **Sampling Rate**        | 16 kHz                   |
| **Total Duration**       | ~3,100 hours             |
| **Languages**            | Egyptian Arabic (arz), Arabic (ar) |
| **Format**               | Parquet                  |
| **Dataset Size**         | 11.57 GB                 |
| **Download Size**        | 10.26 GB                 |
| **Annotations**          | Transcripts              |

## ๐Ÿงฑ Dataset Structure
The dataset follows Hugging Face `datasets` format with two splits:

```python
DatasetDict({
    train: Dataset({
        features: ['audio', 'transcription'],
        num_rows: 50715
    })
    validation: Dataset({
        features: ['audio', 'transcription'],
        num_rows: 2199
    })
})
```
## Data Fields

- **audio**: Audio feature object containing:
  - `Array`: Raw speech waveform (1D float array)
  - `Path`: Relative audio path
  - `Sampling_rate`: 16,000 Hz
- **transcription**: string with Egyptian Arabic transcription

## ๐Ÿ“ˆ Data Statistics

### Split Distribution

| Split        | Examples | Size (GB) | Avg. Words | Empty | Non-Arabic |
|--------------|----------|-----------|------------|-------|------------|
| **Train**    | 50,715   | 10.42     | 13.34      | 6     | 13         |
| **Validation**| 2,199    | 0.36      | 9.60       | 0     | 1          |

### Linguistic Analysis

| Feature         | Train Set                 | Validation Set             |
|-----------------|---------------------------|----------------------------|
| **Top Words**   | ููŠ (20,250), ูˆ (16,977)   | ููŠ (519), ุฃู†ุง (412)        |
| **Top Bigrams** | (ุฅู†, ุฃู†ุง) (1,305)         | (ุดุงุก, ุงู„ู„ู‡) (63)           |
| **Vocab Size**  | 38,451                    | 7,892                      |
| **Unique Speakers** | 1,142                     | 98                         |

<p align="center">
  <img src="https://github.com/NightPrinceY/Helmet-V8/blob/main/train_wordcount_hist.png?raw=true" alt="Train Distribution" width="45%">
  <img src="https://github.com/NightPrinceY/Helmet-V8/blob/main/adapt_wordcount_hist.png?raw=true" alt="Validation Distribution" width="45%">
  <br><em>Word Count Distributions (Left: Train, Right: Validation)</em>
</p>


## How to Use ? ๐Ÿง‘โ€๐Ÿ’ป

### Loading with Hugging Face
```python
from datasets import load_dataset
import IPython.display as ipd

# Load dataset (streaming recommended for large datasets)
ds = load_dataset('NightPrince/MasriSpeech-Full', 
                 split='train',
                 streaming=True)

# Get first sample
sample = next(iter(ds))
print(f"Transcript: {sample['transcription']}")

# Play audio
ipd.Audio(sample['audio']['array'], 
          rate=sample['audio']['sampling_rate'])



```

### Preprocessing the Dataset
```python
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
from datasets import load_dataset
import torch
model_name = "facebook/wav2vec2-base-960h"  # Spanish example
# or "facebook/wav2vec2-large-xlsr-53-en" for English
processor = Wav2Vec2Processor.from_pretrained(model_name)
model = Wav2Vec2ForCTC.from_pretrained(model_name)

def prepare_dataset(batch):
    audio = batch["audio"]
    
    # Extract audio array and sampling rate
    audio_array = audio["array"]
    sampling_rate = audio["sampling_rate"]
    
    # Process audio using feature extractor only
    inputs = processor.feature_extractor(
        audio_array, 
        sampling_rate=sampling_rate, 
        return_tensors="pt"
    )
    
    batch["input_values"] = inputs.input_values[0]
    
    # Process transcription using tokenizer only
    labels = processor.tokenizer(
        batch["transcription"], 
        return_tensors="pt"
    )
    
    batch["labels"] = labels["input_ids"][0]
    
    return batch

# Apply preprocessing to the entire dataset
print("Processing entire dataset...")
dataset = ds.map(prepare_dataset, remove_columns=["audio", "transcription"])
```

### Fine-Tuning an ASR Model
```python
from transformers import AutoModelForCTC, TrainingArguments, Trainer

# Load pre-trained model
model = AutoModelForCTC.from_pretrained("facebook/wav2vec2-base-960h")

# Define training arguments
training_args = TrainingArguments(
    output_dir="./results",
    evaluation_strategy="epoch",
    learning_rate=2e-5,
    per_device_train_batch_size=16,
    num_train_epochs=3,
    save_steps=10,
    save_total_limit=2,
    logging_dir="./logs",
    logging_steps=10,
)

# Initialize Trainer
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=dataset,
    eval_dataset=dataset,
)

# Train the model
trainer.train()
```

### Evaluating the Model
```python
# Evaluate the model
eval_results = trainer.evaluate()
print("Evaluation Results:", eval_results)
```

### Exporting the Model
```python
# Save the fine-tuned model
model.save_pretrained("./fine_tuned_model")
processor.save_pretrained("./fine_tuned_model")
```

## ๐Ÿ“œ Citation
If you use **MasriSpeech-Full** in your research or work, please cite it as follows:

```
@dataset{masrispeech_full,
  author       = {Yahya Muhammad Alnwsany},
  title        = {MasriSpeech-Full: Large-Scale Egyptian Arabic Speech Corpus},
  year         = {2025},
  publisher    = {Hugging Face},
  url          = {https://huggingface.co/collections/NightPrince/masrispeech-dataset-68594e59e46fd12c723f1544}
}
```

## ๐Ÿ“œ Licensing
This dataset is released under the **Apache 2.0 License**. You are free to use, modify, and distribute the dataset, provided you comply with the terms of the license. For more details, see the [LICENSE](https://opensource.org/licenses/Apache-2.0).

## ๐Ÿ™Œ Acknowledgments
We would like to thank the following for their contributions and support:
- **Annotators**: For their meticulous work in creating high-quality transcriptions.
- **Hugging Face**: For providing tools and hosting the dataset.
- **Open-Source Community**: For their continuous support and feedback.

## ๐Ÿ’ก Use Cases
**MasriSpeech-Full** can be used in various applications, including:
- Automatic Speech Recognition (ASR) for Egyptian Arabic.
- Dialectal Arabic linguistic research.
- Speech synthesis and voice cloning.
- Training and benchmarking machine learning models for low-resource languages.

## ๐Ÿค Contributing
We welcome contributions to improve **MasriSpeech-Full**. If you have suggestions, find issues, or want to add new features, please:
1. Fork the repository.
2. Create a new branch for your changes.
3. Submit a pull request with a detailed description of your changes.

For questions or feedback, feel free to contact the maintainer.

## ๐Ÿ“ Changelog
### [1.0.0] - 2025-08-02
- Initial release of **MasriSpeech-Full**.
- Includes 52,914 audio samples with transcriptions.
- Train/validation splits provided.
- Dataset hosted on Hugging Face.