--- license: mit dataset_info: features: - name: url dtype: string - name: tag dtype: string - name: text dtype: string - name: file_path dtype: string - name: dump dtype: string - name: file_size_in_byte dtype: int64 - name: line_count dtype: int64 splits: - name: train num_bytes: 254927419643 num_examples: 100920235 download_size: 147948949488 dataset_size: 254927419643 configs: - config_name: default data_files: - split: train path: data/train-* --- This code-related data from [Fineweb](https://huggingface.co/spaces/HuggingFaceFW/blogpost-fineweb-v1) was specifically used in [OpenCoder](https://huggingface.co/papers/2411.04905) pre-training. We employ fastText in three iterative rounds to recall a final dataset of 55B code and math-related data. You can find math-related data at [OpenCoder-LLM/fineweb-math-corpus](https://huggingface.co/datasets/OpenCoder-LLM/fineweb-math-corpus). ## Citation ``` @inproceedings{Huang2024OpenCoderTO, title={OpenCoder: The Open Cookbook for Top-Tier Code Large Language Models}, author={Siming Huang and Tianhao Cheng and Jason Klein Liu and Jiaran Hao and Liuyihan Song and Yang Xu and J. Yang and J. H. Liu and Chenchen Zhang and Linzheng Chai and Ruifeng Yuan and Zhaoxiang Zhang and Jie Fu and Qian Liu and Ge Zhang and Zili Wang and Yuan Qi and Yinghui Xu and Wei Chu}, year={2024}, url={https://arxiv.org/pdf/2411.04905} } ```