PFEemp2024's picture
Upload Clustering.py
752c107 verified
import textattack
from textattack.shared import AttackedText
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
from math import floor, sqrt
import csv
class Clustering:
def __init__(self, file_, victim_model_wrapper, victim_model, attack):
self.file = file_
self.victim_model_wrapper = victim_model_wrapper
self.victim_model = victim_model
self.attack = attack
def get_embedding_layer(self, model, text_input):
if isinstance(model, textattack.models.helpers.T5ForTextToText):
raise NotImplementedError(
"`get_grads` for T5FotTextToText has not been implemented yet."
)
model.train()
embedding_layer = model.get_input_embeddings()
embedding_layer.weight.requires_grad = True
model.zero_grad()
model_device = next(model.parameters()).device
input_dict = tokenizer(
[text_input],
add_special_tokens=True,
return_tensors="pt",
padding="max_length",
truncation=True,
)
input_dict = input_dict.to(model_device)
embedding = embedding_layer(input_dict["input_ids"])
# embedding = embedding_layer(torch.tensor(input_dict))
return embedding
def prepare_sentences(self):
file = self.file
victim_model = self.victim_model
victim_model_wrapper = self.victim_model_wrapper
attack = self.attack
with open(file, "r") as f:
data = json.load(f)
global_sentences = []
global_masks = []
global_scores = []
for item in data["data"]:
original_words = item["original"].split()
# Iterate over each sample
sentences = []
masks = []
scores = []
_, indices_to_order = attack.get_indices_to_order(
AttackedText(item["original"])
)
for sample in item["samples"]:
scores.append(sample["score"])
attacked_text = AttackedText(sample["attacked_text"])
word2token_mapping_0 = attacked_text.align_with_model_tokens(
victim_model_wrapper
)
embedding_0 = self.get_embedding_layer(
model=victim_model, text_input=sample["attacked_text"]
)
embedding_vectors_0 = embedding_0[0].detach().cpu().numpy()
sentence_embedding = []
mask = []
for _, idx in enumerate(indices_to_order):
# index of tensor that corresponds to the index of the word
matched_tokens_0 = word2token_mapping_0[idx]
embedding_from_layer = np.mean(
embedding_vectors_0[matched_tokens_0], axis=0
)
if original_words[idx] != attacked_text.words[idx]:
mask.append(1)
sentence_embedding.append(embedding_from_layer)
else:
sentence_embedding.append(embedding_from_layer)
mask.append(0)
sentences.append(sentence_embedding)
masks.append(mask)
global_sentences.append(sentences)
global_masks.append(masks)
global_scores.append(scores)
return global_sentences, global_masks, global_scores
def get_unified_mask(self, masks):
unified_mask = np.zeros_like(masks[0])
for mask in masks:
unified_mask = np.logical_or(unified_mask, mask)
return unified_mask.astype(int)
def get_global_unified_masks(self, masks):
global_unified_masks = [self.get_unified_mask(masks=mask) for mask in masks]
return global_unified_masks
def apply_mask_on_vectors(self, sentences, mask):
for i in range(len(sentences)):
sentence = sentences[i]
sentences[i] = [
sentence[j] if mask[j] == 1 else np.zeros_like(sentence[j])
for j in range(len(sentence))
]
return sentences
def apply_mask_on_global_vectors(self, global_sentences, unified_masks):
return [
self.apply_mask_on_vectors(sentences, mask)
for sentences, mask in zip(global_sentences, unified_masks)
]
def matrix_to_sentences(self, matrix_sentences):
return np.vstack([np.concatenate(sentence) for sentence in matrix_sentences])
def global_matrix_to_global_sentences(self, global_matrix_sentences):
# TODO : check for the compatibility of the tex firs \u00e3
return [
self.matrix_to_sentences(sentences) for sentences in global_matrix_sentences
]
def find_best_clustering(self, sentences, max_clusters, method="silhouette"):
if method == "silhouette":
max_silhouette_avg = -1
final_cluster_labels = None
best_k = 2
for num_clusters in range(1, max_clusters + 1):
kmeans = KMeans(n_clusters=num_clusters).fit(sentences)
cluster_labels = kmeans.labels_
silhouette_avg = silhouette_score(sentences, cluster_labels)
if silhouette_avg > max_silhouette_avg:
max_silhouette_avg = silhouette_avg
final_cluster_labels = cluster_labels
best_k = num_clusters
return kmeans.cluster_centers_, final_cluster_labels
elif method == "thumb-rule":
best_k = floor(sqrt(len(sentences)/2)) + 1
kmeans = KMeans(n_clusters=best_k).fit(sentences)
return kmeans.cluster_centers_, kmeans.labels_
elif "custom":
best_k = 5
kmeans = KMeans(n_clusters=best_k).fit(sentences)
return kmeans.cluster_centers_, kmeans.labels_
def find_global_best_clustering(
self, global_sentences, max_clusters_per_group, method
):
return [
self.find_best_clustering(
sentences,
min(len(sentences) - 1, max_clusters_per_group),
method=method,
)
for sentences in global_sentences
]
def get_global_distances(self, sentences, global_clustering):
global_distances = []
for X, clustering in zip(sentences, global_clustering):
centroids = clustering[0]
labels = clustering[1]
global_distances.append(
[
np.sqrt(np.sum((X[i] - centroids[labels[i]]) ** 2))
for i in range(len(X))
]
)
return global_distances
def select_diverce_samples(self, scores, distances, clustering):
scores_ = np.array(scores)
distances_ = np.array(distances)
labels_ = np.array(clustering)
selected_samples = []
normalized_distances = (distances_) / sum(distances_)
finalscores = scores / normalized_distances
clusters = np.unique(labels_)
for cluster in clusters:
indices = np.where(labels_ == cluster)[0]
cluster_finalscores = finalscores[indices]
best_sample_index = indices[np.argmin(cluster_finalscores)]
selected_samples.append(best_sample_index)
return selected_samples
def global_select_diverce_sample(self, global_scores, sentences, global_clustering):
global_distances = self.get_global_distances(sentences, global_clustering)
labels_ = [X[1] for X in global_clustering]
return [
self.select_diverce_samples(scores, distances, clustering)
for scores, distances, clustering in zip(
global_scores, global_distances, labels_
)
]
def save_json(self, selected_samples, output):
data = json.load(open(self.file))
selected_data = []
for item, indices in zip(data["data"], selected_samples):
new_item = item.copy()
new_item["samples"] = [item["samples"][i] for i in indices]
selected_data.append(new_item)
with open(output, "w") as f:
json.dump({"data": selected_data}, f)
def save_csv(self, selected_samples, ground_truth_output, train_file):
with open(self.file) as f:
data = json.load(f)["data"]
with open(train_file, 'a', newline='') as f:
writer = csv.writer(f)
for item, indices in zip(data, selected_samples):
samples = [item["samples"][i] for i in indices]
for sample in samples:
row = [sample, ground_truth_output]
writer.writerow(row)