Datasets:
Delete loading script
Browse files- PGLearn-Small-30_ieee.py +0 -397
PGLearn-Small-30_ieee.py
DELETED
|
@@ -1,397 +0,0 @@
|
|
| 1 |
-
from __future__ import annotations
|
| 2 |
-
from dataclasses import dataclass
|
| 3 |
-
from pathlib import Path
|
| 4 |
-
import json
|
| 5 |
-
import gzip
|
| 6 |
-
|
| 7 |
-
import datasets as hfd
|
| 8 |
-
import h5py
|
| 9 |
-
import pyarrow as pa
|
| 10 |
-
|
| 11 |
-
# ┌──────────────┐
|
| 12 |
-
# │ Metadata │
|
| 13 |
-
# └──────────────┘
|
| 14 |
-
|
| 15 |
-
@dataclass
|
| 16 |
-
class CaseSizes:
|
| 17 |
-
n_bus: int
|
| 18 |
-
n_load: int
|
| 19 |
-
n_gen: int
|
| 20 |
-
n_branch: int
|
| 21 |
-
|
| 22 |
-
CASENAME = "30_ieee"
|
| 23 |
-
SIZES = CaseSizes(n_bus=30, n_load=21, n_gen=6, n_branch=41)
|
| 24 |
-
NUM_TRAIN = 793067
|
| 25 |
-
NUM_TEST = 198267
|
| 26 |
-
NUM_INFEASIBLE = 8666
|
| 27 |
-
|
| 28 |
-
URL = "https://huggingface.co/datasets/PGLearn/PGLearn-Small-30_ieee"
|
| 29 |
-
DESCRIPTION = """\
|
| 30 |
-
The 30_ieee PGLearn optimal power flow dataset, part of the PGLearn-Small collection. \
|
| 31 |
-
"""
|
| 32 |
-
VERSION = hfd.Version("1.0.0")
|
| 33 |
-
DEFAULT_CONFIG_DESCRIPTION="""\
|
| 34 |
-
This configuration contains feasible input, metadata, primal solution, and dual solution data \
|
| 35 |
-
for the ACOPF, DCOPF, and SOCOPF formulations on the {case} system.
|
| 36 |
-
"""
|
| 37 |
-
USE_ML4OPF_WARNING = """
|
| 38 |
-
================================================================================================
|
| 39 |
-
Loading PGLearn-Small-30_ieee through the `datasets.load_dataset` function may be slow.
|
| 40 |
-
|
| 41 |
-
Consider using ML4OPF to directly convert to `torch.Tensor`; for more info see:
|
| 42 |
-
https://github.com/AI4OPT/ML4OPF?tab=readme-ov-file#manually-loading-data
|
| 43 |
-
|
| 44 |
-
Or, use `huggingface_hub.snapshot_download` and an HDF5 reader; for more info see:
|
| 45 |
-
https://huggingface.co/datasets/PGLearn/PGLearn-Small-30_ieee#downloading-individual-files
|
| 46 |
-
================================================================================================
|
| 47 |
-
"""
|
| 48 |
-
CITATION = """\
|
| 49 |
-
@article{klamkinpglearn,
|
| 50 |
-
title={{PGLearn - An Open-Source Learning Toolkit for Optimal Power Flow}},
|
| 51 |
-
author={Klamkin, Michael and Tanneau, Mathieu and Van Hentenryck, Pascal},
|
| 52 |
-
year={2025},
|
| 53 |
-
}\
|
| 54 |
-
"""
|
| 55 |
-
|
| 56 |
-
IS_COMPRESSED = True
|
| 57 |
-
|
| 58 |
-
# ┌──────────────────┐
|
| 59 |
-
# │ Formulations │
|
| 60 |
-
# └──────────────────┘
|
| 61 |
-
|
| 62 |
-
def acopf_features(sizes: CaseSizes, primal: bool, dual: bool, meta: bool):
|
| 63 |
-
features = {}
|
| 64 |
-
if primal: features.update(acopf_primal_features(sizes))
|
| 65 |
-
if dual: features.update(acopf_dual_features(sizes))
|
| 66 |
-
if meta: features.update({f"ACOPF/{k}": v for k, v in META_FEATURES.items()})
|
| 67 |
-
return features
|
| 68 |
-
|
| 69 |
-
def dcopf_features(sizes: CaseSizes, primal: bool, dual: bool, meta: bool):
|
| 70 |
-
features = {}
|
| 71 |
-
if primal: features.update(dcopf_primal_features(sizes))
|
| 72 |
-
if dual: features.update(dcopf_dual_features(sizes))
|
| 73 |
-
if meta: features.update({f"DCOPF/{k}": v for k, v in META_FEATURES.items()})
|
| 74 |
-
return features
|
| 75 |
-
|
| 76 |
-
def socopf_features(sizes: CaseSizes, primal: bool, dual: bool, meta: bool):
|
| 77 |
-
features = {}
|
| 78 |
-
if primal: features.update(socopf_primal_features(sizes))
|
| 79 |
-
if dual: features.update(socopf_dual_features(sizes))
|
| 80 |
-
if meta: features.update({f"SOCOPF/{k}": v for k, v in META_FEATURES.items()})
|
| 81 |
-
return features
|
| 82 |
-
|
| 83 |
-
FORMULATIONS_TO_FEATURES = {
|
| 84 |
-
"ACOPF": acopf_features,
|
| 85 |
-
"DCOPF": dcopf_features,
|
| 86 |
-
"SOCOPF": socopf_features,
|
| 87 |
-
}
|
| 88 |
-
|
| 89 |
-
# ┌───────────────────┐
|
| 90 |
-
# │ BuilderConfig │
|
| 91 |
-
# └───────────────────┘
|
| 92 |
-
|
| 93 |
-
class PGLearnSmall30_ieeeConfig(hfd.BuilderConfig):
|
| 94 |
-
"""BuilderConfig for PGLearn-Small-30_ieee.
|
| 95 |
-
By default, primal solution data, metadata, input, casejson, are included for the train and test splits.
|
| 96 |
-
|
| 97 |
-
To modify the default configuration, pass attributes of this class to `datasets.load_dataset`:
|
| 98 |
-
|
| 99 |
-
Attributes:
|
| 100 |
-
formulations (list[str]): The formulation(s) to include, e.g. ["ACOPF", "DCOPF"]
|
| 101 |
-
primal (bool, optional): Include primal solution data. Defaults to True.
|
| 102 |
-
dual (bool, optional): Include dual solution data. Defaults to False.
|
| 103 |
-
meta (bool, optional): Include metadata. Defaults to True.
|
| 104 |
-
input (bool, optional): Include input data. Defaults to True.
|
| 105 |
-
casejson (bool, optional): Include case.json data. Defaults to True.
|
| 106 |
-
train (bool, optional): Include training samples. Defaults to True.
|
| 107 |
-
test (bool, optional): Include testing samples. Defaults to True.
|
| 108 |
-
infeasible (bool, optional): Include infeasible samples. Defaults to False.
|
| 109 |
-
"""
|
| 110 |
-
def __init__(self,
|
| 111 |
-
formulations: list[str],
|
| 112 |
-
primal: bool=True, dual: bool=False, meta: bool=True, input: bool = True, casejson: bool=True,
|
| 113 |
-
train: bool=True, test: bool=True, infeasible: bool=False,
|
| 114 |
-
compressed: bool=IS_COMPRESSED, **kwargs
|
| 115 |
-
):
|
| 116 |
-
super(PGLearnSmall30_ieeeConfig, self).__init__(version=VERSION, **kwargs)
|
| 117 |
-
|
| 118 |
-
self.case = CASENAME
|
| 119 |
-
self.formulations = formulations
|
| 120 |
-
|
| 121 |
-
self.primal = primal
|
| 122 |
-
self.dual = dual
|
| 123 |
-
self.meta = meta
|
| 124 |
-
self.input = input
|
| 125 |
-
self.casejson = casejson
|
| 126 |
-
|
| 127 |
-
self.train = train
|
| 128 |
-
self.test = test
|
| 129 |
-
self.infeasible = infeasible
|
| 130 |
-
|
| 131 |
-
self.gz_ext = ".gz" if compressed else ""
|
| 132 |
-
|
| 133 |
-
@property
|
| 134 |
-
def size(self):
|
| 135 |
-
return SIZES
|
| 136 |
-
|
| 137 |
-
@property
|
| 138 |
-
def features(self):
|
| 139 |
-
features = {}
|
| 140 |
-
if self.casejson: features.update(case_features())
|
| 141 |
-
if self.input: features.update(input_features(SIZES))
|
| 142 |
-
for formulation in self.formulations:
|
| 143 |
-
features.update(FORMULATIONS_TO_FEATURES[formulation](SIZES, self.primal, self.dual, self.meta))
|
| 144 |
-
return hfd.Features(features)
|
| 145 |
-
|
| 146 |
-
@property
|
| 147 |
-
def splits(self):
|
| 148 |
-
splits: dict[hfd.Split, dict[str, str | int]] = {}
|
| 149 |
-
if self.train:
|
| 150 |
-
splits[hfd.Split.TRAIN] = {
|
| 151 |
-
"name": "train",
|
| 152 |
-
"num_examples": NUM_TRAIN
|
| 153 |
-
}
|
| 154 |
-
if self.test:
|
| 155 |
-
splits[hfd.Split.TEST] = {
|
| 156 |
-
"name": "test",
|
| 157 |
-
"num_examples": NUM_TEST
|
| 158 |
-
}
|
| 159 |
-
if self.infeasible:
|
| 160 |
-
splits[hfd.Split("infeasible")] = {
|
| 161 |
-
"name": "infeasible",
|
| 162 |
-
"num_examples": NUM_INFEASIBLE
|
| 163 |
-
}
|
| 164 |
-
return splits
|
| 165 |
-
|
| 166 |
-
@property
|
| 167 |
-
def urls(self):
|
| 168 |
-
urls: dict[str, None | str | list] = {
|
| 169 |
-
"case": None, "train": [], "test": [], "infeasible": [],
|
| 170 |
-
}
|
| 171 |
-
|
| 172 |
-
if self.casejson: urls["case"] = f"case.json" + self.gz_ext
|
| 173 |
-
|
| 174 |
-
split_names = []
|
| 175 |
-
if self.train: split_names.append("train")
|
| 176 |
-
if self.test: split_names.append("test")
|
| 177 |
-
if self.infeasible: split_names.append("infeasible")
|
| 178 |
-
|
| 179 |
-
for split in split_names:
|
| 180 |
-
if self.input: urls[split].append(f"{split}/input.h5" + self.gz_ext)
|
| 181 |
-
for formulation in self.formulations:
|
| 182 |
-
if self.primal: urls[split].append(f"{split}/{formulation}/primal.h5" + self.gz_ext)
|
| 183 |
-
if self.dual: urls[split].append(f"{split}/{formulation}/dual.h5" + self.gz_ext)
|
| 184 |
-
if self.meta: urls[split].append(f"{split}/{formulation}/meta.h5" + self.gz_ext)
|
| 185 |
-
return urls
|
| 186 |
-
|
| 187 |
-
# ┌────────────────────┐
|
| 188 |
-
# │ DatasetBuilder │
|
| 189 |
-
# └────────────────────┘
|
| 190 |
-
|
| 191 |
-
class PGLearnSmall30_ieee(hfd.ArrowBasedBuilder):
|
| 192 |
-
"""DatasetBuilder for PGLearn-Small-30_ieee.
|
| 193 |
-
The main interface is `datasets.load_dataset` with `trust_remote_code=True`, e.g.
|
| 194 |
-
|
| 195 |
-
```python
|
| 196 |
-
from datasets import load_dataset
|
| 197 |
-
ds = load_dataset("PGLearn/PGLearn-Small-30_ieee", trust_remote_code=True,
|
| 198 |
-
# modify the default configuration by passing kwargs
|
| 199 |
-
formulations=["DCOPF"],
|
| 200 |
-
dual=False,
|
| 201 |
-
meta=False,
|
| 202 |
-
)
|
| 203 |
-
```
|
| 204 |
-
"""
|
| 205 |
-
|
| 206 |
-
DEFAULT_WRITER_BATCH_SIZE = 10000
|
| 207 |
-
BUILDER_CONFIG_CLASS = PGLearnSmall30_ieeeConfig
|
| 208 |
-
DEFAULT_CONFIG_NAME=CASENAME
|
| 209 |
-
BUILDER_CONFIGS = [
|
| 210 |
-
PGLearnSmall30_ieeeConfig(
|
| 211 |
-
name=CASENAME, description=DEFAULT_CONFIG_DESCRIPTION.format(case=CASENAME),
|
| 212 |
-
formulations=list(FORMULATIONS_TO_FEATURES.keys()),
|
| 213 |
-
primal=True, dual=True, meta=True, input=True, casejson=True,
|
| 214 |
-
train=True, test=True, infeasible=False,
|
| 215 |
-
)
|
| 216 |
-
]
|
| 217 |
-
|
| 218 |
-
def _info(self):
|
| 219 |
-
return hfd.DatasetInfo(
|
| 220 |
-
features=self.config.features, splits=self.config.splits,
|
| 221 |
-
description=DESCRIPTION + self.config.description,
|
| 222 |
-
homepage=URL, citation=CITATION,
|
| 223 |
-
)
|
| 224 |
-
|
| 225 |
-
def _split_generators(self, dl_manager: hfd.DownloadManager):
|
| 226 |
-
hfd.logging.get_logger().warning(USE_ML4OPF_WARNING)
|
| 227 |
-
|
| 228 |
-
filepaths = dl_manager.download_and_extract(self.config.urls)
|
| 229 |
-
|
| 230 |
-
splits: list[hfd.SplitGenerator] = []
|
| 231 |
-
if self.config.train:
|
| 232 |
-
splits.append(hfd.SplitGenerator(
|
| 233 |
-
name=hfd.Split.TRAIN,
|
| 234 |
-
gen_kwargs=dict(case_file=filepaths["case"], data_files=tuple(filepaths["train"]), n_samples=NUM_TRAIN),
|
| 235 |
-
))
|
| 236 |
-
if self.config.test:
|
| 237 |
-
splits.append(hfd.SplitGenerator(
|
| 238 |
-
name=hfd.Split.TEST,
|
| 239 |
-
gen_kwargs=dict(case_file=filepaths["case"], data_files=tuple(filepaths["test"]), n_samples=NUM_TEST),
|
| 240 |
-
))
|
| 241 |
-
if self.config.infeasible:
|
| 242 |
-
splits.append(hfd.SplitGenerator(
|
| 243 |
-
name=hfd.Split("infeasible"),
|
| 244 |
-
gen_kwargs=dict(case_file=filepaths["case"], data_files=tuple(filepaths["infeasible"]), n_samples=NUM_INFEASIBLE),
|
| 245 |
-
))
|
| 246 |
-
return splits
|
| 247 |
-
|
| 248 |
-
def _generate_tables(self, case_file: str | None, data_files: tuple[hfd.utils.track.tracked_str], n_samples: int):
|
| 249 |
-
case_data: str | None = json.dumps(json.load(open_maybe_gzip(case_file))) if case_file is not None else None
|
| 250 |
-
|
| 251 |
-
opened_files = [open_maybe_gzip(file) for file in data_files]
|
| 252 |
-
data = {'/'.join(Path(df.get_origin()).parts[-2:]).split('.')[0]: h5py.File(of) for of, df in zip(opened_files, data_files)}
|
| 253 |
-
for k in list(data.keys()):
|
| 254 |
-
if "/input" in k: data[k.split("/", 1)[1]] = data.pop(k)
|
| 255 |
-
|
| 256 |
-
batch_size = self._writer_batch_size or self.DEFAULT_WRITER_BATCH_SIZE
|
| 257 |
-
for i in range(0, n_samples, batch_size):
|
| 258 |
-
effective_batch_size = min(batch_size, n_samples - i)
|
| 259 |
-
|
| 260 |
-
sample_data = {
|
| 261 |
-
f"{dk}/{k}":
|
| 262 |
-
hfd.features.features.numpy_to_pyarrow_listarray(v[i:i + effective_batch_size, ...])
|
| 263 |
-
for dk, d in data.items() for k, v in d.items() if f"{dk}/{k}" in self.config.features
|
| 264 |
-
}
|
| 265 |
-
|
| 266 |
-
if case_data is not None:
|
| 267 |
-
sample_data["case/json"] = pa.array([case_data] * effective_batch_size)
|
| 268 |
-
|
| 269 |
-
yield i, pa.Table.from_pydict(sample_data)
|
| 270 |
-
|
| 271 |
-
for f in opened_files:
|
| 272 |
-
f.close()
|
| 273 |
-
|
| 274 |
-
# ┌──────────────┐
|
| 275 |
-
# │ Features │
|
| 276 |
-
# └──────────────┘
|
| 277 |
-
|
| 278 |
-
FLOAT_TYPE = "float32"
|
| 279 |
-
INT_TYPE = "int64"
|
| 280 |
-
BOOL_TYPE = "bool"
|
| 281 |
-
STRING_TYPE = "string"
|
| 282 |
-
|
| 283 |
-
def case_features():
|
| 284 |
-
# FIXME: better way to share schema of case data -- need to treat jagged arrays
|
| 285 |
-
return {
|
| 286 |
-
"case/json": hfd.Value(STRING_TYPE),
|
| 287 |
-
}
|
| 288 |
-
|
| 289 |
-
META_FEATURES = {
|
| 290 |
-
"meta/seed": hfd.Value(dtype=INT_TYPE),
|
| 291 |
-
"meta/formulation": hfd.Value(dtype=STRING_TYPE),
|
| 292 |
-
"meta/primal_objective_value": hfd.Value(dtype=FLOAT_TYPE),
|
| 293 |
-
"meta/dual_objective_value": hfd.Value(dtype=FLOAT_TYPE),
|
| 294 |
-
"meta/primal_status": hfd.Value(dtype=STRING_TYPE),
|
| 295 |
-
"meta/dual_status": hfd.Value(dtype=STRING_TYPE),
|
| 296 |
-
"meta/termination_status": hfd.Value(dtype=STRING_TYPE),
|
| 297 |
-
"meta/build_time": hfd.Value(dtype=FLOAT_TYPE),
|
| 298 |
-
"meta/extract_time": hfd.Value(dtype=FLOAT_TYPE),
|
| 299 |
-
"meta/solve_time": hfd.Value(dtype=FLOAT_TYPE),
|
| 300 |
-
}
|
| 301 |
-
|
| 302 |
-
def input_features(sizes: CaseSizes):
|
| 303 |
-
return {
|
| 304 |
-
"input/pd": hfd.Sequence(length=sizes.n_load, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
| 305 |
-
"input/qd": hfd.Sequence(length=sizes.n_load, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
| 306 |
-
"input/gen_status": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=BOOL_TYPE)),
|
| 307 |
-
"input/branch_status": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=BOOL_TYPE)),
|
| 308 |
-
"input/seed": hfd.Value(dtype=INT_TYPE),
|
| 309 |
-
}
|
| 310 |
-
|
| 311 |
-
def acopf_primal_features(sizes: CaseSizes):
|
| 312 |
-
return {
|
| 313 |
-
"ACOPF/primal/vm": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
| 314 |
-
"ACOPF/primal/va": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
| 315 |
-
"ACOPF/primal/pg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
| 316 |
-
"ACOPF/primal/qg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
| 317 |
-
"ACOPF/primal/pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
| 318 |
-
"ACOPF/primal/pt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
| 319 |
-
"ACOPF/primal/qf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
| 320 |
-
"ACOPF/primal/qt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
| 321 |
-
}
|
| 322 |
-
def acopf_dual_features(sizes: CaseSizes):
|
| 323 |
-
return {
|
| 324 |
-
"ACOPF/dual/kcl_p": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
| 325 |
-
"ACOPF/dual/kcl_q": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
| 326 |
-
"ACOPF/dual/vm": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
| 327 |
-
"ACOPF/dual/pg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
| 328 |
-
"ACOPF/dual/qg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
| 329 |
-
"ACOPF/dual/ohm_pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
| 330 |
-
"ACOPF/dual/ohm_pt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
| 331 |
-
"ACOPF/dual/ohm_qf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
| 332 |
-
"ACOPF/dual/ohm_qt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
| 333 |
-
"ACOPF/dual/pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
| 334 |
-
"ACOPF/dual/pt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
| 335 |
-
"ACOPF/dual/qf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
| 336 |
-
"ACOPF/dual/qt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
| 337 |
-
"ACOPF/dual/va_diff": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
| 338 |
-
"ACOPF/dual/sm_fr": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
| 339 |
-
"ACOPF/dual/sm_to": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
| 340 |
-
"ACOPF/dual/slack_bus": hfd.Value(dtype=FLOAT_TYPE),
|
| 341 |
-
}
|
| 342 |
-
def dcopf_primal_features(sizes: CaseSizes):
|
| 343 |
-
return {
|
| 344 |
-
"DCOPF/primal/va": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
| 345 |
-
"DCOPF/primal/pg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
| 346 |
-
"DCOPF/primal/pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
| 347 |
-
}
|
| 348 |
-
def dcopf_dual_features(sizes: CaseSizes):
|
| 349 |
-
return {
|
| 350 |
-
"DCOPF/dual/kcl_p": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
| 351 |
-
"DCOPF/dual/pg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
| 352 |
-
"DCOPF/dual/ohm_pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
| 353 |
-
"DCOPF/dual/pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
| 354 |
-
"DCOPF/dual/va_diff": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
| 355 |
-
"DCOPF/dual/slack_bus": hfd.Value(dtype=FLOAT_TYPE),
|
| 356 |
-
}
|
| 357 |
-
def socopf_primal_features(sizes: CaseSizes):
|
| 358 |
-
return {
|
| 359 |
-
"SOCOPF/primal/w": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
| 360 |
-
"SOCOPF/primal/pg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
| 361 |
-
"SOCOPF/primal/qg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
| 362 |
-
"SOCOPF/primal/pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
| 363 |
-
"SOCOPF/primal/pt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
| 364 |
-
"SOCOPF/primal/qf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
| 365 |
-
"SOCOPF/primal/qt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
| 366 |
-
"SOCOPF/primal/wr": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
| 367 |
-
"SOCOPF/primal/wi": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
| 368 |
-
}
|
| 369 |
-
def socopf_dual_features(sizes: CaseSizes):
|
| 370 |
-
return {
|
| 371 |
-
"SOCOPF/dual/kcl_p": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
| 372 |
-
"SOCOPF/dual/kcl_q": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
| 373 |
-
"SOCOPF/dual/w": hfd.Sequence(length=sizes.n_bus, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
| 374 |
-
"SOCOPF/dual/pg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
| 375 |
-
"SOCOPF/dual/qg": hfd.Sequence(length=sizes.n_gen, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
| 376 |
-
"SOCOPF/dual/ohm_pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
| 377 |
-
"SOCOPF/dual/ohm_pt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
| 378 |
-
"SOCOPF/dual/ohm_qf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
| 379 |
-
"SOCOPF/dual/ohm_qt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
| 380 |
-
"SOCOPF/dual/jabr": hfd.Array2D(shape=(sizes.n_branch, 4), dtype=FLOAT_TYPE),
|
| 381 |
-
"SOCOPF/dual/sm_fr": hfd.Array2D(shape=(sizes.n_branch, 3), dtype=FLOAT_TYPE),
|
| 382 |
-
"SOCOPF/dual/sm_to": hfd.Array2D(shape=(sizes.n_branch, 3), dtype=FLOAT_TYPE),
|
| 383 |
-
"SOCOPF/dual/va_diff": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
| 384 |
-
"SOCOPF/dual/wr": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
| 385 |
-
"SOCOPF/dual/wi": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
| 386 |
-
"SOCOPF/dual/pf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
| 387 |
-
"SOCOPF/dual/pt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
| 388 |
-
"SOCOPF/dual/qf": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
| 389 |
-
"SOCOPF/dual/qt": hfd.Sequence(length=sizes.n_branch, feature=hfd.Value(dtype=FLOAT_TYPE)),
|
| 390 |
-
}
|
| 391 |
-
|
| 392 |
-
# ┌───────────────┐
|
| 393 |
-
# │ Utilities │
|
| 394 |
-
# └───────────────┘
|
| 395 |
-
|
| 396 |
-
def open_maybe_gzip(path):
|
| 397 |
-
return gzip.open(path, "rb") if path.endswith(".gz") else open(path, "rb")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|