|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
import os |
|
|
|
import datasets |
|
from datasets.tasks import QuestionAnsweringExtractive |
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
_DESCRIPTION = """\ |
|
Duconv is a chinese conversation \ |
|
dataset, designed to evaluate the dialogue models. |
|
""" |
|
|
|
_URL = "https://bj.bcebos.com/paddlenlp/datasets/DuConv.zip" |
|
|
|
|
|
class DuconvConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for Duconv.""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for Duconv. |
|
|
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(DuconvConfig, self).__init__(**kwargs) |
|
|
|
|
|
class Duconv(datasets.GeneratorBasedBuilder): |
|
BUILDER_CONFIGS = [ |
|
DuconvConfig( |
|
name="DuConv", |
|
version=datasets.Version("1.0.0", ""), |
|
description=_DESCRIPTION, |
|
), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features({ |
|
"id": |
|
datasets.Value("string"), |
|
"goal": |
|
datasets.Sequence(datasets.Sequence(datasets.Value("string"))), |
|
"knowledge": |
|
datasets.Sequence(datasets.Sequence(datasets.Value("string"))), |
|
"conversation": |
|
datasets.Sequence(datasets.Value("string")), |
|
"history": |
|
datasets.Sequence(datasets.Value("string")), |
|
"response": |
|
datasets.Value("string"), |
|
}), |
|
|
|
|
|
supervised_keys=None, |
|
homepage="https://arxiv.org/pdf/1906.05572.pdf", |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
dl_dir = dl_manager.download_and_extract(_URL) |
|
|
|
return [ |
|
datasets.SplitGenerator(name="train", |
|
gen_kwargs={ |
|
"filepath": |
|
os.path.join(dl_dir, 'DuConv', |
|
'train.txt'), |
|
}), |
|
datasets.SplitGenerator(name="dev", |
|
gen_kwargs={ |
|
"filepath": |
|
os.path.join(dl_dir, 'DuConv', |
|
'dev.txt'), |
|
}), |
|
datasets.SplitGenerator(name="test_1", |
|
gen_kwargs={ |
|
"filepath": |
|
os.path.join(dl_dir, 'DuConv', |
|
'test_1.txt'), |
|
}), |
|
datasets.SplitGenerator(name="test_2", |
|
gen_kwargs={ |
|
"filepath": |
|
os.path.join(dl_dir, 'DuConv', |
|
'test_2.txt'), |
|
}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""This function returns the examples in the raw (text) form.""" |
|
logger.info("generating examples from = %s", filepath) |
|
key = 0 |
|
with open(filepath, 'r', encoding="utf-8") as fin: |
|
for line in fin: |
|
duconv = json.loads(line) |
|
|
|
goal = duconv["goal"] if "goal" in duconv.keys() else [[]] |
|
knowledge = duconv["knowledge"] if "knowledge" in duconv.keys( |
|
) else [[]] |
|
conversation = duconv[ |
|
"conversation"] if "conversation" in duconv.keys() else [] |
|
history = duconv["history"] if "history" in duconv.keys( |
|
) else [] |
|
response = duconv["response"] if "response" in duconv.keys( |
|
) else "" |
|
|
|
yield key, { |
|
"id": str(key), |
|
"goal": goal, |
|
"knowledge": knowledge, |
|
"conversation": conversation, |
|
"history": history, |
|
"response": response, |
|
} |
|
key += 1 |
|
|