Datasets:
QCRI
/

Modalities:
Text
Formats:
json
Languages:
Hindi
ArXiv:
Libraries:
Datasets
pandas
License:
AliShahroor commited on
Commit
8278f74
·
verified ·
1 Parent(s): 61f93bb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +14 -15
README.md CHANGED
@@ -149,7 +149,7 @@ configs:
149
 
150
  ## Overview
151
 
152
- LlamaLens is a specialized multilingual LLM designed for analyzing news and social media content. It focuses on 19 NLP tasks, leveraging 52 datasets across Arabic, English, and Hindi.
153
 
154
  <p align="center"> <img src="https://huggingface.co/datasets/QCRI/LlamaLens-Arabic/resolve/main/capablities_tasks_datasets.png" style="width: 40%;" id="title-icon"> </p>
155
 
@@ -160,7 +160,7 @@ This repo includes scripts needed to run our full pipeline, including data prepr
160
  ### Features
161
 
162
  - Multilingual support (Arabic, English, Hindi)
163
- - 19 NLP tasks with 52 datasets
164
  - Optimized for news and social media content analysis
165
 
166
  ## 📂 Dataset Overview
@@ -182,21 +182,20 @@ This repo includes scripts needed to run our full pipeline, including data prepr
182
 
183
  ## Results
184
 
185
- Below, we present the performance of **LlamaLens** in **Hindi** compared to existing SOTA (if available) and the Llama-Instruct baseline, The “Δ” (Delta) column here is
186
- calculated as **(LLamalens – SOTA)**.
187
 
188
- ---
189
 
190
- | **Task** | **Dataset** | **Metric** | **SOTA** | **Llama-instruct** | **LLamalens** | **Δ** (LLamalens - SOTA) |
191
- |------------------------|------------------------|-----------:|--------:|--------------------:|--------------:|------------------------------:|
192
- | NLI | NLI_dataset | W-F1 | 0.646 | 0.633 | 0.655 | 0.009 |
193
- | News Summarization | xlsum | R-2 | 0.136 | 0.078 | 0.117 | -0.019 |
194
- | Sentiment | Sentiment Analysis | Acc | 0.697 | 0.552 | 0.669 | -0.028 |
195
- | Factuality | fake-news | Mi-F1 || 0.759 | 0.713 ||
196
- | Hate Speech | hate-speech-detection | Mi-F1 | 0.639 | 0.750 | 0.994 | 0.355 |
197
- | Hate Speech | Hindi-Hostility | W-F1 | 0.841 | 0.469 | 0.720 | -0.121 |
198
- | Offensive | Offensive Speech | Mi-F1 | 0.723 | 0.621 | 0.847 | 0.124 |
199
- | Cyberbullying | MC_Hinglish1 | Acc | 0.609 | 0.233 | 0.587 | -0.022 |
 
200
 
201
 
202
  ## File Format
 
149
 
150
  ## Overview
151
 
152
+ LlamaLens is a specialized multilingual LLM designed for analyzing news and social media content. It focuses on 18 NLP tasks, leveraging 52 datasets across Arabic, English, and Hindi.
153
 
154
  <p align="center"> <img src="https://huggingface.co/datasets/QCRI/LlamaLens-Arabic/resolve/main/capablities_tasks_datasets.png" style="width: 40%;" id="title-icon"> </p>
155
 
 
160
  ### Features
161
 
162
  - Multilingual support (Arabic, English, Hindi)
163
+ - 18 NLP tasks with 52 datasets
164
  - Optimized for news and social media content analysis
165
 
166
  ## 📂 Dataset Overview
 
182
 
183
  ## Results
184
 
185
+ Below, we present the performance of **L-Lens: LlamaLens** , where *"Eng"* refers to the English-instructed model and *"Native"* refers to the model trained with native language instructions. The results are compared against the SOTA (where available) and the Base: **Llama-Instruct 3.1 baseline**. The **Δ** (Delta) column indicates the difference between LlamaLens and the SOTA performance, calculated as (LlamaLens – SOTA).
 
186
 
 
187
 
188
+ ---
189
+ | **Task** | **Dataset** | **Metric** | **SOTA** | **Base** | **L-Lens-Eng** | **L-Lens-Native** | **Δ (L-Lens (Eng) - SOTA)** |
190
+ |:----------------------------------:|:--------------------------------------------:|:----------:|:--------:|:---------------------:|:---------------------:|:--------------------:|:------------------------:|
191
+ | Factuality | fake-news | Mi-F1 | -- | 0.759 | 0.994 | 0.993 | -- |
192
+ | Hate Speech Detection | hate-speech-detection | Mi-F1 | 0.639 | 0.750 | 0.963 | 0.963 | 0.324 |
193
+ | Hate Speech Detection | Hindi-Hostility-Detection-CONSTRAINT-2021 | W-F1 | 0.841 | 0.469 | 0.753 | 0.753 | -0.088 |
194
+ | Natural Language Inference | Natural Language Inference | W-F1 | 0.646 | 0.633 | 0.568 | 0.679 | -0.078 |
195
+ | News Summarization | xlsum | R-2 | 0.136 | 0.078 | 0.171 | 0.170 | 0.035 |
196
+ | Offensive Language Detection | Offensive Speech Detection | Mi-F1 | 0.723 | 0.621 | 0.862 | 0.865 | 0.139 |
197
+ | Cyberbullying Detection | MC_Hinglish1 | Acc | 0.609 | 0.233 | 0.625 | 0.627 | 0.016 |
198
+ | Sentiment Classification | Sentiment Analysis | Acc | 0.697 | 0.552 | 0.647 | 0.654 | -0.050
199
 
200
 
201
  ## File Format