Update README.md
Browse files
README.md
CHANGED
|
@@ -149,7 +149,7 @@ configs:
|
|
| 149 |
|
| 150 |
## Overview
|
| 151 |
|
| 152 |
-
LlamaLens is a specialized multilingual LLM designed for analyzing news and social media content. It focuses on
|
| 153 |
|
| 154 |
<p align="center"> <img src="https://huggingface.co/datasets/QCRI/LlamaLens-Arabic/resolve/main/capablities_tasks_datasets.png" style="width: 40%;" id="title-icon"> </p>
|
| 155 |
|
|
@@ -160,7 +160,7 @@ This repo includes scripts needed to run our full pipeline, including data prepr
|
|
| 160 |
### Features
|
| 161 |
|
| 162 |
- Multilingual support (Arabic, English, Hindi)
|
| 163 |
-
-
|
| 164 |
- Optimized for news and social media content analysis
|
| 165 |
|
| 166 |
## 📂 Dataset Overview
|
|
@@ -182,21 +182,20 @@ This repo includes scripts needed to run our full pipeline, including data prepr
|
|
| 182 |
|
| 183 |
## Results
|
| 184 |
|
| 185 |
-
Below, we present
|
| 186 |
-
calculated as **(LLamalens – SOTA)**.
|
| 187 |
|
| 188 |
-
---
|
| 189 |
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
|
| 194 |
-
|
|
| 195 |
-
|
|
| 196 |
-
|
|
| 197 |
-
|
|
| 198 |
-
|
|
| 199 |
-
|
|
|
|
|
| 200 |
|
| 201 |
|
| 202 |
## File Format
|
|
|
|
| 149 |
|
| 150 |
## Overview
|
| 151 |
|
| 152 |
+
LlamaLens is a specialized multilingual LLM designed for analyzing news and social media content. It focuses on 18 NLP tasks, leveraging 52 datasets across Arabic, English, and Hindi.
|
| 153 |
|
| 154 |
<p align="center"> <img src="https://huggingface.co/datasets/QCRI/LlamaLens-Arabic/resolve/main/capablities_tasks_datasets.png" style="width: 40%;" id="title-icon"> </p>
|
| 155 |
|
|
|
|
| 160 |
### Features
|
| 161 |
|
| 162 |
- Multilingual support (Arabic, English, Hindi)
|
| 163 |
+
- 18 NLP tasks with 52 datasets
|
| 164 |
- Optimized for news and social media content analysis
|
| 165 |
|
| 166 |
## 📂 Dataset Overview
|
|
|
|
| 182 |
|
| 183 |
## Results
|
| 184 |
|
| 185 |
+
Below, we present the performance of **L-Lens: LlamaLens** , where *"Eng"* refers to the English-instructed model and *"Native"* refers to the model trained with native language instructions. The results are compared against the SOTA (where available) and the Base: **Llama-Instruct 3.1 baseline**. The **Δ** (Delta) column indicates the difference between LlamaLens and the SOTA performance, calculated as (LlamaLens – SOTA).
|
|
|
|
| 186 |
|
|
|
|
| 187 |
|
| 188 |
+
---
|
| 189 |
+
| **Task** | **Dataset** | **Metric** | **SOTA** | **Base** | **L-Lens-Eng** | **L-Lens-Native** | **Δ (L-Lens (Eng) - SOTA)** |
|
| 190 |
+
|:----------------------------------:|:--------------------------------------------:|:----------:|:--------:|:---------------------:|:---------------------:|:--------------------:|:------------------------:|
|
| 191 |
+
| Factuality | fake-news | Mi-F1 | -- | 0.759 | 0.994 | 0.993 | -- |
|
| 192 |
+
| Hate Speech Detection | hate-speech-detection | Mi-F1 | 0.639 | 0.750 | 0.963 | 0.963 | 0.324 |
|
| 193 |
+
| Hate Speech Detection | Hindi-Hostility-Detection-CONSTRAINT-2021 | W-F1 | 0.841 | 0.469 | 0.753 | 0.753 | -0.088 |
|
| 194 |
+
| Natural Language Inference | Natural Language Inference | W-F1 | 0.646 | 0.633 | 0.568 | 0.679 | -0.078 |
|
| 195 |
+
| News Summarization | xlsum | R-2 | 0.136 | 0.078 | 0.171 | 0.170 | 0.035 |
|
| 196 |
+
| Offensive Language Detection | Offensive Speech Detection | Mi-F1 | 0.723 | 0.621 | 0.862 | 0.865 | 0.139 |
|
| 197 |
+
| Cyberbullying Detection | MC_Hinglish1 | Acc | 0.609 | 0.233 | 0.625 | 0.627 | 0.016 |
|
| 198 |
+
| Sentiment Classification | Sentiment Analysis | Acc | 0.697 | 0.552 | 0.647 | 0.654 | -0.050
|
| 199 |
|
| 200 |
|
| 201 |
## File Format
|