nielsr HF Staff commited on
Commit
af219f0
·
verified ·
1 Parent(s): 2eb742e

Improve dataset card: Add task categories, code link, and sample usage

Browse files

This PR enhances the dataset card for the WiCount dataset by:
- Adding `task_categories` (`time-series-forecasting`, `time-series-classification`) and relevant `tags` (`wireless-sensing`, `csi`, `people-counting`, `wifi`) to the metadata for better searchability and categorization on the Hub.
- Adding `language: en` to the metadata.
- Including a direct link to the main GitHub repository (`https://github.com/RS2002/CSI-BERT2`) for easier access to the associated code.
- Removing the auto-generated description line "The description is generated by Grok3.".
- Introducing a "Sample Usage" section with code snippets for pre-training, fine-tuning, and inference, directly derived from the project's GitHub README, to guide users on how to utilize the dataset with the CSI-BERT2 framework.

Files changed (1) hide show
  1. README.md +58 -4
README.md CHANGED
@@ -1,10 +1,22 @@
1
- # WiCount
 
 
 
 
 
 
 
 
 
 
 
2
 
3
- The description is generated by Grok3.
4
 
5
  ## Dataset Description
6
 
7
- - **Repository:** [CSI-BERT2/WiCount at main · RS2002/CSI-BERT2](https://github.com/RS2002/CSI-BERT2/tree/main/WiCount)
 
8
  - **Paper:** [CSI-BERT2: A BERT-inspired Framework for Efficient CSI Prediction and Classification in Wireless Communication and Sensing](https://arxiv.org/abs/2412.06861)
9
  - **Contact:** [[email protected]](mailto:[email protected])
10
  - **Collectors:** Zijian Zhao, Tingwei Chen
@@ -13,6 +25,48 @@ The description is generated by Grok3.
13
  The WiCount dataset contains synchronized Channel State Information (CSI), Received Signal Strength Indicator (RSSI), and timestamp data collected using ESP32-S3 devices for WiFi-based people number estimation in a meeting room scenario. The dataset includes samples for estimating the number of people (0–3) in the environment.
14
  - **Tasks:** People Number Estimation
15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
  ## Dataset Structure
17
 
18
  ### Data Instances
@@ -35,7 +89,7 @@ Each instance is a `.csv` file representing a 60-second sample with the followin
35
  | local_timestamp | ESP32 local time |
36
  | rssi | Received Signal Strength Indicator |
37
  | data | CSI data (104 numbers, representing 52 subcarriers as complex values) |
38
- | Other columns | Additional ESP32 metadata (e.g., MAC address, MCS details) |
39
 
40
  ### Data Splits
41
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ task_categories:
5
+ - time-series-forecasting
6
+ - time-series-classification
7
+ tags:
8
+ - wireless-sensing
9
+ - csi
10
+ - people-counting
11
+ - wifi
12
+ ---
13
 
14
+ # WiCount
15
 
16
  ## Dataset Description
17
 
18
+ - **Repository (WiCount subdirectory):** [CSI-BERT2/WiCount at main · RS2002/CSI-BERT2](https://github.com/RS2002/CSI-BERT2/tree/main/WiCount)
19
+ - **Code:** [https://github.com/RS2002/CSI-BERT2](https://github.com/RS2002/CSI-BERT2)
20
  - **Paper:** [CSI-BERT2: A BERT-inspired Framework for Efficient CSI Prediction and Classification in Wireless Communication and Sensing](https://arxiv.org/abs/2412.06861)
21
  - **Contact:** [[email protected]](mailto:[email protected])
22
  - **Collectors:** Zijian Zhao, Tingwei Chen
 
25
  The WiCount dataset contains synchronized Channel State Information (CSI), Received Signal Strength Indicator (RSSI), and timestamp data collected using ESP32-S3 devices for WiFi-based people number estimation in a meeting room scenario. The dataset includes samples for estimating the number of people (0–3) in the environment.
26
  - **Tasks:** People Number Estimation
27
 
28
+ ## Sample Usage
29
+
30
+ To use this dataset with the `CSI-BERT2` code, first clone the repository:
31
+
32
+ ```bash
33
+ git clone https://github.com/RS2002/CSI-BERT2
34
+ cd CSI-BERT2
35
+ ```
36
+
37
+ Then you can use the provided scripts for pre-training, fine-tuning, and inference. Replace `<data path>` with the path to the WiCount dataset downloaded from Hugging Face.
38
+
39
+ ### Pre-training
40
+
41
+ ```bash
42
+ python pretrain.py --GAN --data_path <data path>
43
+ ```
44
+ If you do not want to use the discriminator, you can omit the `--GAN` flag.
45
+
46
+ ### Fine-tuning for CSI Prediction
47
+
48
+ ```bash
49
+ python prediction.py --GAN --data_path <data path> --parameters <fold path of the whole pre-trained models>
50
+ ```
51
+
52
+ ### Fine-tuning for CSI Sensing Task (e.g., People Number Estimation)
53
+
54
+ For the WiCount dataset, use `task "people"`.
55
+
56
+ ```bash
57
+ python finetune.py --data_path <data path> --class_num <class num> --task "people" --path <parameter path of the backbone> --mode <mode>
58
+ ```
59
+ The `mode` parameter can be set as `0`, `1`, or `2`, corresponding to three experiments in the paper:
60
+ - `0`: Training Set (100Hz), Testing Set (100Hz)
61
+ - `1`: Training Set (100Hz+50Hz), Testing Set (100Hz+50Hz)
62
+ - `2`: Training Set (100Hz), Testing Set (50Hz)
63
+
64
+ ### Inference for CSI Prediction
65
+
66
+ ```bash
67
+ python prediction.py --data_path <data path> --parameters <fold path of the whole pretrained models> --eval_percent <the percentage of CSI sequence to be predicted>
68
+ ```
69
+
70
  ## Dataset Structure
71
 
72
  ### Data Instances
 
89
  | local_timestamp | ESP32 local time |
90
  | rssi | Received Signal Strength Indicator |
91
  | data | CSI data (104 numbers, representing 52 subcarriers as complex values) |
92
+ | Other columns | Additional ESP32 metadata (e.g., MAC address, MCS details) |\
93
 
94
  ### Data Splits
95