Integer type question evaluation fixed
Browse files- data/metadata.jsonl +2 -2
- jee-neet-benchmark.py +2 -2
- src/benchmark_runner.py +2 -2
- src/evaluation.py +62 -22
data/metadata.jsonl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8f388b32c0d64c519aebdd23349f51f9bd9ae96977d26a2cb8a9d00192224cec
|
3 |
+
size 130978
|
jee-neet-benchmark.py
CHANGED
@@ -63,7 +63,7 @@ class JeeNeetBenchmark(datasets.GeneratorBasedBuilder):
|
|
63 |
"exam_code": datasets.Value("string"), # Will provide default if missing in source
|
64 |
"subject": datasets.Value("string"),
|
65 |
"question_type": datasets.Value("string"),
|
66 |
-
"correct_answer": datasets.
|
67 |
}
|
68 |
)
|
69 |
return datasets.DatasetInfo(
|
@@ -163,5 +163,5 @@ class JeeNeetBenchmark(datasets.GeneratorBasedBuilder):
|
|
163 |
"exam_code": row.get("exam_code", "N/A"), # Provide "N/A" if exam_code is missing
|
164 |
"subject": row.get("subject", ""),
|
165 |
"question_type": row.get("question_type", ""),
|
166 |
-
"correct_answer": row.get("correct_answer", []),
|
167 |
}
|
|
|
63 |
"exam_code": datasets.Value("string"), # Will provide default if missing in source
|
64 |
"subject": datasets.Value("string"),
|
65 |
"question_type": datasets.Value("string"),
|
66 |
+
"correct_answer": datasets.Value("string"), # Store as JSON string
|
67 |
}
|
68 |
)
|
69 |
return datasets.DatasetInfo(
|
|
|
163 |
"exam_code": row.get("exam_code", "N/A"), # Provide "N/A" if exam_code is missing
|
164 |
"subject": row.get("subject", ""),
|
165 |
"question_type": row.get("question_type", ""),
|
166 |
+
"correct_answer": json.dumps(row.get("correct_answer", [])),
|
167 |
}
|
src/benchmark_runner.py
CHANGED
@@ -295,7 +295,7 @@ def run_benchmark(
|
|
295 |
# Explicitly specify data_files and data_dir for local loading.
|
296 |
# data_dir should be the project root ('.') when loading a local script,
|
297 |
# as the script is copied to a cache and needs to know where the actual data is.
|
298 |
-
dataset = load_dataset(dataset_path, split='test', data_files={'test': 'data/metadata.jsonl'}, data_dir=os.getcwd(), trust_remote_code=True)
|
299 |
dataset = dataset.cast_column("image", HFImage(decode=True)) # Ensure images are loaded as PIL
|
300 |
logging.info(f"Dataset loaded successfully from path: {dataset_path}. Original number of questions: {len(dataset)}")
|
301 |
except Exception as e:
|
@@ -390,7 +390,7 @@ def run_benchmark(
|
|
390 |
exam_name_from_data = example.get("exam_name", "UNKNOWN_EXAM") # Get exam_name from data
|
391 |
question_type_from_data = example.get("question_type", "MCQ_SINGLE_CORRECT") # Get question_type
|
392 |
image: PILImage.Image = example["image"]
|
393 |
-
truth = example["correct_answer"]
|
394 |
|
395 |
result_data = {
|
396 |
"question_id": question_id,
|
|
|
295 |
# Explicitly specify data_files and data_dir for local loading.
|
296 |
# data_dir should be the project root ('.') when loading a local script,
|
297 |
# as the script is copied to a cache and needs to know where the actual data is.
|
298 |
+
dataset = load_dataset(dataset_path, split='test', data_files={'test': 'data/metadata.jsonl'}, data_dir=os.getcwd(), trust_remote_code=True, download_mode="force_redownload")
|
299 |
dataset = dataset.cast_column("image", HFImage(decode=True)) # Ensure images are loaded as PIL
|
300 |
logging.info(f"Dataset loaded successfully from path: {dataset_path}. Original number of questions: {len(dataset)}")
|
301 |
except Exception as e:
|
|
|
390 |
exam_name_from_data = example.get("exam_name", "UNKNOWN_EXAM") # Get exam_name from data
|
391 |
question_type_from_data = example.get("question_type", "MCQ_SINGLE_CORRECT") # Get question_type
|
392 |
image: PILImage.Image = example["image"]
|
393 |
+
truth = json.loads(example["correct_answer"]) # Parse the JSON string back to a list/list of lists
|
394 |
|
395 |
result_data = {
|
396 |
"question_id": question_id,
|
src/evaluation.py
CHANGED
@@ -69,6 +69,21 @@ def get_subject_as_section(subject: str, question_num_for_log: int) -> Optional[
|
|
69 |
logging.warning(f"Invalid or missing subject ('{subject}') for question_num '{question_num_for_log}'. Cannot determine section.")
|
70 |
return None
|
71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
def calculate_single_question_score_details(result_item: Dict[str, Any]) -> Dict[str, Any]:
|
74 |
"""
|
@@ -99,25 +114,23 @@ def calculate_single_question_score_details(result_item: Dict[str, Any]) -> Dict
|
|
99 |
# Ensure truth is a set of uppercase strings for consistent processing.
|
100 |
# Ground truth from metadata.jsonl is expected to be a list of strings.
|
101 |
# e.g., ["1"], ["A"], ["12.75"], ["A", "C"]
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
elif isinstance(truth, int):
|
115 |
-
logging.warning(f"Ground truth for {question_id} is int: {truth}. Converting to string set.")
|
116 |
-
truth_set = {str(truth).upper()}
|
117 |
else:
|
118 |
logging.error(f"Invalid ground_truth format for {question_id}: {truth} (type: {type(truth)}). Assigning 0 marks.")
|
119 |
return {"marks_awarded": 0, "evaluation_status": "error_bad_ground_truth"}
|
120 |
|
|
|
121 |
if not api_success or pred is None: # pred is None means our internal parsing failed
|
122 |
evaluation_status = "failure_api_or_parse"
|
123 |
current_score_change = -1
|
@@ -140,7 +153,8 @@ def calculate_single_question_score_details(result_item: Dict[str, Any]) -> Dict
|
|
140 |
is_correct = False
|
141 |
if len(pred_set) == 1: # Ensure prediction is indeed a single option
|
142 |
single_pred_answer = list(pred_set)[0] # Get the single predicted option
|
143 |
-
|
|
|
144 |
is_correct = True
|
145 |
|
146 |
if is_correct:
|
@@ -157,23 +171,49 @@ def calculate_single_question_score_details(result_item: Dict[str, Any]) -> Dict
|
|
157 |
else: current_score_change = 0 # Default no penalty
|
158 |
|
159 |
elif exam_name == "JEE_MAIN" and question_type == "INTEGER": # Integer answers are now strings in a list e.g. ["14"]
|
160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
current_score_change = 4; evaluation_status = "correct"
|
162 |
else:
|
163 |
current_score_change = 0; evaluation_status = "incorrect"
|
164 |
|
165 |
elif exam_name == "JEE_ADVANCED":
|
166 |
# Note: MCQ_SINGLE_CORRECT for JEE_ADVANCED is handled by the common block above
|
167 |
-
if question_type == "INTEGER":
|
168 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
current_score_change = 4; evaluation_status = "correct"
|
170 |
else:
|
171 |
current_score_change = 0; evaluation_status = "incorrect"
|
172 |
elif question_type == "MCQ_MULTIPLE_CORRECT":
|
173 |
-
|
|
|
|
|
|
|
174 |
num_chosen_options = len(pred_set)
|
175 |
-
correct_chosen_options = pred_set.intersection(
|
176 |
-
incorrect_chosen_options = pred_set.difference(
|
177 |
num_correct_chosen = len(correct_chosen_options)
|
178 |
num_incorrect_chosen = len(incorrect_chosen_options)
|
179 |
|
|
|
69 |
logging.warning(f"Invalid or missing subject ('{subject}') for question_num '{question_num_for_log}'. Cannot determine section.")
|
70 |
return None
|
71 |
|
72 |
+
def is_within_range(predicted_value_str: str, lower_bound_str: str, upper_bound_str: str) -> bool:
|
73 |
+
"""
|
74 |
+
Checks if a predicted numerical value (as a string) falls within a specified range.
|
75 |
+
The comparison is inclusive.
|
76 |
+
"""
|
77 |
+
try:
|
78 |
+
predicted_value = float(predicted_value_str)
|
79 |
+
lower_bound = float(lower_bound_str)
|
80 |
+
upper_bound = float(upper_bound_str)
|
81 |
+
except ValueError:
|
82 |
+
logging.debug(f"Could not convert predicted value '{predicted_value_str}' or bounds ('{lower_bound_str}', '{upper_bound_str}') to numbers.")
|
83 |
+
return False
|
84 |
+
|
85 |
+
return lower_bound <= predicted_value <= upper_bound
|
86 |
+
|
87 |
|
88 |
def calculate_single_question_score_details(result_item: Dict[str, Any]) -> Dict[str, Any]:
|
89 |
"""
|
|
|
114 |
# Ensure truth is a set of uppercase strings for consistent processing.
|
115 |
# Ground truth from metadata.jsonl is expected to be a list of strings.
|
116 |
# e.g., ["1"], ["A"], ["12.75"], ["A", "C"]
|
117 |
+
# For integer ranges, it will be like [["0.7", "0.8"]]
|
118 |
+
truth_processed: List[Union[str, List[str]]] = []
|
119 |
+
if isinstance(truth, list):
|
120 |
+
for t_item in truth:
|
121 |
+
if isinstance(t_item, str):
|
122 |
+
truth_processed.append(t_item.upper())
|
123 |
+
elif isinstance(t_item, list) and len(t_item) == 2 and all(isinstance(x, str) for x in t_item):
|
124 |
+
truth_processed.append([x.upper() for x in t_item]) # Store range as list of uppercase strings
|
125 |
+
else:
|
126 |
+
logging.error(f"Invalid item in ground_truth list for {question_id}: {t_item}. Skipping.")
|
127 |
+
elif isinstance(truth, str):
|
128 |
+
truth_processed.append(truth.upper())
|
|
|
|
|
|
|
129 |
else:
|
130 |
logging.error(f"Invalid ground_truth format for {question_id}: {truth} (type: {type(truth)}). Assigning 0 marks.")
|
131 |
return {"marks_awarded": 0, "evaluation_status": "error_bad_ground_truth"}
|
132 |
|
133 |
+
|
134 |
if not api_success or pred is None: # pred is None means our internal parsing failed
|
135 |
evaluation_status = "failure_api_or_parse"
|
136 |
current_score_change = -1
|
|
|
153 |
is_correct = False
|
154 |
if len(pred_set) == 1: # Ensure prediction is indeed a single option
|
155 |
single_pred_answer = list(pred_set)[0] # Get the single predicted option
|
156 |
+
# Check against all processed truths (which are single strings for MCQ)
|
157 |
+
if single_pred_answer in truth_processed:
|
158 |
is_correct = True
|
159 |
|
160 |
if is_correct:
|
|
|
171 |
else: current_score_change = 0 # Default no penalty
|
172 |
|
173 |
elif exam_name == "JEE_MAIN" and question_type == "INTEGER": # Integer answers are now strings in a list e.g. ["14"]
|
174 |
+
# For JEE_MAIN INTEGER, we expect truth_processed to contain single strings
|
175 |
+
is_correct = False
|
176 |
+
if len(pred_set) == 1:
|
177 |
+
predicted_answer_str = list(pred_set)[0]
|
178 |
+
if predicted_answer_str in truth_processed: # Check against single string truths
|
179 |
+
is_correct = True
|
180 |
+
|
181 |
+
if is_correct:
|
182 |
current_score_change = 4; evaluation_status = "correct"
|
183 |
else:
|
184 |
current_score_change = 0; evaluation_status = "incorrect"
|
185 |
|
186 |
elif exam_name == "JEE_ADVANCED":
|
187 |
# Note: MCQ_SINGLE_CORRECT for JEE_ADVANCED is handled by the common block above
|
188 |
+
if question_type == "INTEGER":
|
189 |
+
is_correct = False
|
190 |
+
if len(pred_set) == 1:
|
191 |
+
predicted_answer_str = list(pred_set)[0] # Get the single predicted string
|
192 |
+
|
193 |
+
# Iterate through each ground truth entry in the 'truth_processed' list
|
194 |
+
for gt_entry in truth_processed:
|
195 |
+
if isinstance(gt_entry, list) and len(gt_entry) == 2: # This is a range [lower, upper]
|
196 |
+
lower_bound_str, upper_bound_str = gt_entry[0], gt_entry[1]
|
197 |
+
if is_within_range(predicted_answer_str, lower_bound_str, upper_bound_str):
|
198 |
+
is_correct = True
|
199 |
+
break # Found a matching range, no need to check others
|
200 |
+
elif isinstance(gt_entry, str): # This is an exact integer match
|
201 |
+
if predicted_answer_str == gt_entry: # gt_entry is already uppercase
|
202 |
+
is_correct = True
|
203 |
+
break # Found an exact match, no need to check others
|
204 |
+
|
205 |
+
if is_correct:
|
206 |
current_score_change = 4; evaluation_status = "correct"
|
207 |
else:
|
208 |
current_score_change = 0; evaluation_status = "incorrect"
|
209 |
elif question_type == "MCQ_MULTIPLE_CORRECT":
|
210 |
+
# For MCQ_MULTIPLE_CORRECT, truth_processed contains single strings
|
211 |
+
truth_set_mcq = set(truth_processed) # Convert to set for intersection operations
|
212 |
+
|
213 |
+
num_correct_options_in_truth = len(truth_set_mcq)
|
214 |
num_chosen_options = len(pred_set)
|
215 |
+
correct_chosen_options = pred_set.intersection(truth_set_mcq)
|
216 |
+
incorrect_chosen_options = pred_set.difference(truth_set_mcq)
|
217 |
num_correct_chosen = len(correct_chosen_options)
|
218 |
num_incorrect_chosen = len(incorrect_chosen_options)
|
219 |
|