Upload 24 files
Browse files- .gitignore +2 -0
- LICENSE +21 -0
- README.md +233 -12
- _config.yml +1 -0
- counter/counter.txt.tar.gz +3 -0
- ner/ijnlp.tar.xz +3 -0
- ner/jahangir.tar.xz +3 -0
- ner/mk-pucit.tar.gz +3 -0
- ner/uner.txt.tar.gz +3 -0
- news/headlines.csv.tar.gz +3 -0
- news/real_fake_news.tar.gz +3 -0
- news/urdu-news-dataset-1M.tar.xz +3 -0
- pos/test.txt.tar.gz +3 -0
- pos/train.txt.tar.gz +3 -0
- qa/qa_ahadis.csv +0 -0
- qa/qa_gk.csv +0 -0
- sentiment/daraz_products_reviews.csv.tar.gz +3 -0
- sentiment/imdb_urdu_reviews.csv.tar.gz +3 -0
- sentiment/products_sentiment_urdu.csv.tar.gz +3 -0
- sentiment/roman.csv.tar.gz +3 -0
- sentiment/urdu.tsv.tar.gz +3 -0
- spacy/ur_model-0.0.0.tar.gz +3 -0
- spacy/ur_ner-0.0.0.tar.gz +3 -0
- summary/urdu_summary.tar.bz2 +3 -0
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
.idea
|
2 |
+
.DS_Store
|
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2019 Muhammad Irfan
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
README.md
CHANGED
@@ -1,12 +1,233 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
## Summary Dataset
|
2 |
+
This a summary dataset. You can train abstractive summarization model using this dataset. It contains 3 files i.e.
|
3 |
+
`train`, `test` and `val`. Data is in `jsonl` format.
|
4 |
+
|
5 |
+
Every `line` has these keys.
|
6 |
+
```text
|
7 |
+
id
|
8 |
+
url
|
9 |
+
title
|
10 |
+
summary
|
11 |
+
text
|
12 |
+
```
|
13 |
+
|
14 |
+
You can easily read the data with pandas
|
15 |
+
```python
|
16 |
+
import pandas as pd
|
17 |
+
test = pd.read_json("summary/urdu_test.jsonl", lines=True)
|
18 |
+
```
|
19 |
+
|
20 |
+
## POS dataset
|
21 |
+
Urdu dataset for POS training. This is a small dataset and can be used for training parts of speech tagging for Urdu Language.
|
22 |
+
Structure of the dataset is simple i.e.
|
23 |
+
```text
|
24 |
+
word TAG
|
25 |
+
word TAG
|
26 |
+
```
|
27 |
+
|
28 |
+
The tagset used to build dataset is taken from [Sajjad's Tagset](http://www.cle.org.pk/Downloads/langproc/UrduPOStagger/UrduPOStagset.pdf)
|
29 |
+
|
30 |
+
## NER Datasets
|
31 |
+
Following are the datasets used for NER tasks.
|
32 |
+
|
33 |
+
### UNER Dataset
|
34 |
+
Happy to announce that UNER (Urdu Named Entity Recognition) dataset is available for NLP apps.
|
35 |
+
Following are NER tags which are used to build the dataset:
|
36 |
+
```text
|
37 |
+
PERSON
|
38 |
+
LOCATION
|
39 |
+
ORGANIZATION
|
40 |
+
DATE
|
41 |
+
NUMBER
|
42 |
+
DESIGNATION
|
43 |
+
TIME
|
44 |
+
```
|
45 |
+
If you want to read more about the dataset check this paper [Urdu NER](https://www.researchgate.net/profile/Ali_Daud2/publication/312218764_Named_Entity_Dataset_for_Urdu_Named_Entity_Recognition_Task/links/5877354d08ae8fce492efe1f.pdf).
|
46 |
+
NER Dataset is in `utf-16` format.
|
47 |
+
|
48 |
+
### MK-PUCIT Dataset
|
49 |
+
Latest for Urdu NER is available. Check this paper for more information [MK-PUCIT](https://www.researchgate.net/publication/332653135_URDU_NAMED_ENTITY_RECOGNITION_CORPUS_GENERATION_AND_DEEP_LEARNING_APPLICATIONS).
|
50 |
+
|
51 |
+
Entities used in the dataset are
|
52 |
+
```text
|
53 |
+
Other
|
54 |
+
Organization
|
55 |
+
Person
|
56 |
+
Location
|
57 |
+
```
|
58 |
+
|
59 |
+
`MK-PUCIT` author also provided the `Dropbox` link to download the data. [Dropbox](https://www.dropbox.com/sh/1ivw7ykm2tugg94/AAB9t5wnN7FynESpo7TjJW8la)
|
60 |
+
|
61 |
+
### IJNLP 2008 dataset
|
62 |
+
IJNLP dataset has following NER tags.
|
63 |
+
```text
|
64 |
+
O
|
65 |
+
LOCATION
|
66 |
+
PERSON
|
67 |
+
TIME
|
68 |
+
ORGANIZATION
|
69 |
+
NUMBER
|
70 |
+
DESIGNATION
|
71 |
+
```
|
72 |
+
|
73 |
+
### Jahangir dataset
|
74 |
+
Jahangir dataset has following NER tags.
|
75 |
+
```text
|
76 |
+
O
|
77 |
+
PERSON
|
78 |
+
LOCATION
|
79 |
+
ORGANIZATION
|
80 |
+
DATE
|
81 |
+
TIME
|
82 |
+
```
|
83 |
+
|
84 |
+
|
85 |
+
## Datasets for Sentiment Analysis
|
86 |
+
### IMDB Urdu Movie Review Dataset.
|
87 |
+
This dataset is taken from [IMDB Urdu](https://www.kaggle.com/akkefa/imdb-dataset-of-50k-movie-translated-urdu-reviews).
|
88 |
+
It was translated using Google Translator. It has only two labels i.e.
|
89 |
+
```text
|
90 |
+
positive
|
91 |
+
negative
|
92 |
+
```
|
93 |
+
|
94 |
+
### Roman Dataset
|
95 |
+
This dataset can be used for sentiment analysis for Roman Urdu. It has 3 classes for classification.
|
96 |
+
```textmate
|
97 |
+
Neutral
|
98 |
+
Positive
|
99 |
+
Negative
|
100 |
+
```
|
101 |
+
If you need more information about this dataset checkout the link [Roman Urdu Dataset](https://archive.ics.uci.edu/ml/datasets/Roman+Urdu+Data+Set).
|
102 |
+
|
103 |
+
### Products & Services dataset
|
104 |
+
This dataset is collected from different sources like social media and web for various products and services for sentiment analysis.
|
105 |
+
It contains 3 classes.
|
106 |
+
```textmate
|
107 |
+
pos
|
108 |
+
neg
|
109 |
+
neu
|
110 |
+
```
|
111 |
+
|
112 |
+
|
113 |
+
### Daraz Products dataset
|
114 |
+
This dataset consists of reviews taken from Daraz. You can use it for sentiment analysis as well as spam or ham classification.
|
115 |
+
It contains following columns.
|
116 |
+
```text
|
117 |
+
Product_ID
|
118 |
+
Date
|
119 |
+
Rating
|
120 |
+
Spam(1) and Not Spam(0)
|
121 |
+
Reviews
|
122 |
+
Sentiment
|
123 |
+
Features
|
124 |
+
```
|
125 |
+
Dataset is taken from [kaggle daraz](https://www.kaggle.com/datasets/naveedhn/daraz-roman-urdu-reviews)
|
126 |
+
|
127 |
+
|
128 |
+
### Urdu Dataset
|
129 |
+
Here is a small dataset for sentiment analysis. It has following classifying labels
|
130 |
+
```textmate
|
131 |
+
P
|
132 |
+
N
|
133 |
+
O
|
134 |
+
```
|
135 |
+
Link to the paper [Paper](https://www.researchgate.net/publication/338396518_Urdu_Sentiment_Corpus_v10_Linguistic_Exploration_and_Visualization_of_Labeled_Dataset_for_Urdu_Sentiment_Analysis)
|
136 |
+
GitHub link to data [Urdu Corpus V1](https://github.com/MuhammadYaseenKhan/Urdu-Sentiment-Corpus)
|
137 |
+
|
138 |
+
## News Datasets
|
139 |
+
### Urdu News Dataset 1M
|
140 |
+
This dataset(`news/urdu-news-dataset-1M.tar.xz`) is taken from [Urdu News Dataset 1M](https://data.mendeley.com/datasets/834vsxnb99/3). It has 4 classes and can be used for classification
|
141 |
+
and other NLP tasks. I have removed unnecessary columns.
|
142 |
+
```text
|
143 |
+
Business & Economics
|
144 |
+
Entertainment
|
145 |
+
Science & Technology
|
146 |
+
Sports
|
147 |
+
```
|
148 |
+
|
149 |
+
### Real-Fake News
|
150 |
+
This dataset(`news/real_fake_news.tar.gz`) is used for classification of real and fake news in [Fake News Dataset](https://github.com/MaazAmjad/Datasets-for-Urdu-news)
|
151 |
+
Dataset contains following domain news.
|
152 |
+
```text
|
153 |
+
Technology
|
154 |
+
Education
|
155 |
+
Business
|
156 |
+
Sports
|
157 |
+
Politics
|
158 |
+
Entertainment
|
159 |
+
```
|
160 |
+
|
161 |
+
### News Headlines
|
162 |
+
Headlines(`news/headlines.csv.tar.gz`) dataset is taken from [Urd News Headlines](https://github.com/mwaseemrandhawa/Urdu-News-Headline-Dataset). Original dataset is in Excel format,
|
163 |
+
I've converted to csv for experiments. Can be used for clustering and classification.
|
164 |
+
### RAW corpus and models
|
165 |
+
## COUNTER (COrpus of Urdu News TExt Reuse) Dataset
|
166 |
+
This dataset is collected from journalism and can be used for Urdu NLP research.
|
167 |
+
Here is the link to the resource for more information
|
168 |
+
[COUNTER](http://ucrel.lancs.ac.uk/textreuse/counter.php).
|
169 |
+
|
170 |
+
## QA datasets
|
171 |
+
I have added two qa datasets, if someone wants to use it for QA based Chatbot. QA(Ahadis): `qa_ahadis.csv` It contains qa pairs for Ahadis.
|
172 |
+
|
173 |
+
The dataset `qa_gk.csv` it contains the general knowledge QA.
|
174 |
+
## Urdu model for SpaCy
|
175 |
+
Urdu model for SpaCy is available now. You can use it to build NLP apps easily. Install the package in your working environment.
|
176 |
+
```shell
|
177 |
+
pip install ur_model-0.0.0.tar.gz
|
178 |
+
```
|
179 |
+
|
180 |
+
You can use it with following code.
|
181 |
+
```python
|
182 |
+
import spacy
|
183 |
+
nlp = spacy.load("ur_model")
|
184 |
+
doc = nlp("میں خوش ہوں کے اردو ماڈل دستیاب ہے۔ ")
|
185 |
+
```
|
186 |
+
|
187 |
+
### NLP Tutorials for Urdu
|
188 |
+
Checkout my articles related to Urdu NLP tasks
|
189 |
+
* POS Tagging [Urdu POS Tagging using MLP](https://www.urdunlp.com/2019/04/urdu-pos-tagging-using-mlp.html)
|
190 |
+
* NER [How to build NER dataset for Urdu language?](https://www.urdunlp.com/2019/08/how-to-build-ner-dataset-for-urdu.html), [Named Entity Recognition for Urdu](https://www.urdunlp.com/2019/05/named-entity-recognition-for-urdu.html)
|
191 |
+
* Word 2 Vector [How to build Word 2 Vector for Urdu language](https://www.urdunlp.com/2019/08/how-to-build-word-2-vector-for-urdu.html)
|
192 |
+
* Word and Sentence Similarity [Urdu Word and Sentence Similarity using SpaCy](https://www.urdunlp.com/2019/08/urdu-word-and-sentence-similarity-using.html)
|
193 |
+
* Tokenization [Urdu Tokenization using SpaCy](https://www.urdunlp.com/2019/05/urdu-tokenization-usingspacy.html)
|
194 |
+
* Urdu Language Model [How to build Urdu language model in SpaCy](https://www.urdunlp.com/2019/08/how-to-build-urdu-language-model-in.html)
|
195 |
+
|
196 |
+
These articles are available on [UrduNLP](https://www.urdunlp.com/).
|
197 |
+
|
198 |
+
## Some Helpful Tips
|
199 |
+
|
200 |
+
### Download Single file from GitHub
|
201 |
+
If you want to get only raw files(text or code) then use curl command i.e.
|
202 |
+
```shell script
|
203 |
+
curl -LJO https://github.com/mirfan899/Urdu/blob/master/ner/uner.txt
|
204 |
+
```
|
205 |
+
|
206 |
+
### Concatenate files
|
207 |
+
```shell script
|
208 |
+
cd data
|
209 |
+
cat */*.txt > file_name.txt
|
210 |
+
```
|
211 |
+
|
212 |
+
### MK-PUCIT
|
213 |
+
Concatenate files of MK-PUCIT into single file using.
|
214 |
+
```shell script
|
215 |
+
cat */*.txt > file_name.txt
|
216 |
+
```
|
217 |
+
|
218 |
+
Original dataset has a bug like `Others` and `Other` which are same entities, if you want to use the dataset
|
219 |
+
from `dropbox` link, use following commands to clean it.
|
220 |
+
```python
|
221 |
+
import pandas as pd
|
222 |
+
data = pd.read_csv('ner/mk-pucit.txt', sep='\t', names={"tag", "word"})
|
223 |
+
data.tag.replace({"Others":"Other"}, inplace=True)
|
224 |
+
# save according you need as csv or txt by changing the extension
|
225 |
+
data.to_csv("ner/mk-pucit.txt", index=False, header=False, sep='\t')
|
226 |
+
```
|
227 |
+
Now csv/txt file has format
|
228 |
+
```text
|
229 |
+
word tag
|
230 |
+
```
|
231 |
+
|
232 |
+
## Note
|
233 |
+
If you have a dataset(link) and want to contribute, feel free to create PR.
|
_config.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
theme: jekyll-theme-minimal
|
counter/counter.txt.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:53a46cadebc355b80ace027e73084e80c681c4dc502776686cad7417073e4246
|
3 |
+
size 583151
|
ner/ijnlp.tar.xz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:63c7c3e5d525b08d4f24bf2434e5148984b500801a641998e7663a304a666fbb
|
3 |
+
size 90228
|
ner/jahangir.tar.xz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ef05ffaf104518fa49bf691ccc18d66aa9f4775c0514a779d68575959ac211ba
|
3 |
+
size 92284
|
ner/mk-pucit.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6f801ab6d0572cf63c1c8927faca52dd745d9da7b839b8f5a8bcfac3d3a7e62c
|
3 |
+
size 23172345
|
ner/uner.txt.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bf50bf3baa469eab744768cfe5bdcd8fbb05c9532a35c2adce4d17c8e3825153
|
3 |
+
size 108496
|
news/headlines.csv.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c8b29ca3c8209047618a9a05dce9b37dfcb50a6fd0fe62753aa5c9ed4ead7431
|
3 |
+
size 10203570
|
news/real_fake_news.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:99deb9f56b5366efb6013285417ae5ff1fc4791d682c51216658fea00b9f161f
|
3 |
+
size 677359
|
news/urdu-news-dataset-1M.tar.xz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:df038a232a96b41af548c8b3ffa57b0ca4e8f5bb3e2bcf88cbb8000dc07c39df
|
3 |
+
size 37775640
|
pos/test.txt.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8f1361762292f753954714db1eecfdb2e71e156e7f161f201e529ba334e803a3
|
3 |
+
size 243003
|
pos/train.txt.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7030e7d0018d60d100f0780a9bc3f9af69df3cb5fa9a4938818363ca9c57a912
|
3 |
+
size 9689595
|
qa/qa_ahadis.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
qa/qa_gk.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
sentiment/daraz_products_reviews.csv.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f122493dd8b61d2a9f6215e38ca97eff226bacee7033489e18de70df37bebe1d
|
3 |
+
size 264135
|
sentiment/imdb_urdu_reviews.csv.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f60f7e9972661dc5d8ec1c867972ae35f86dac32de43a274a2a794095dccdf99
|
3 |
+
size 31510992
|
sentiment/products_sentiment_urdu.csv.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f0f3bd0857e6e3ea23ebe7d90468c5475dd14ad8f86a0e5d107f27dd1593135d
|
3 |
+
size 320436
|
sentiment/roman.csv.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:74758d824b81f6e616387732b8151a378465ac67a411b98a6efe2e300b7257dc
|
3 |
+
size 626250
|
sentiment/urdu.tsv.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:199c4fe30c9be9eb50b16726fc40e9eac5cda3b42355226c4ee7d049f9853bf7
|
3 |
+
size 50416
|
spacy/ur_model-0.0.0.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3fe9a0d5ce61c5de4b4a2e20788a84c464ee12b29a9e2b1587a01d7ce2000008
|
3 |
+
size 71093666
|
spacy/ur_ner-0.0.0.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5bc1779776c625378b6755f218c5f26c44060c05a0622ea7e10ca728606b759d
|
3 |
+
size 11107654
|
summary/urdu_summary.tar.bz2
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c15fc605d523c7987422941227e73b6ea20edd95d143bc5dcd4581bac7898f20
|
3 |
+
size 69278142
|