RunningPie commited on
Commit
e02ee6b
·
verified ·
1 Parent(s): aa418a8

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -57,3 +57,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
57
  # Video files - compressed
58
  *.mp4 filter=lfs diff=lfs merge=lfs -text
59
  *.webm filter=lfs diff=lfs merge=lfs -text
 
 
57
  # Video files - compressed
58
  *.mp4 filter=lfs diff=lfs merge=lfs -text
59
  *.webm filter=lfs diff=lfs merge=lfs -text
60
+ claris_curated_dataset.csv filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - sign language recognition
6
+ - emergency response
7
+ - computer vision
8
+ ---
9
+
10
+ # CLARIS - Critical Emergency Sign Language Dataset
11
+
12
+ This dataset is a curated subset of the "Google - Isolated Sign Language Recognition" dataset, specifically filtered for the **CLARIS (Clear and Live Automated Response for Inclusive Safety)** project.
13
+
14
+ ## Dataset Description
15
+
16
+ The primary goal of the CLARIS project is to develop a mobile application that provides a lifeline for the Deaf community during emergencies. This dataset was created to train a proof-of-concept AI model capable of recognizing a vocabulary of critical emergency-related signs.
17
+
18
+ The data consists of pre-extracted landmark coordinates from video clips of isolated signs. It originates from the [Google - Isolated Sign Language Recognition Kaggle Competition](https://www.kaggle.com/competitions/asl-signs).
19
+
20
+ ## Dataset Structure
21
+
22
+ The dataset is provided in both CSV and Parquet (coming soon) formats. Each row represents the coordinates of a single landmark in a single frame of a video sequence.
23
+
24
+ | Column | Dtype | Description |
25
+ | ---------------- | ------- | --------------------------------------------------------------------------- |
26
+ | `frame` | int16 | The frame number within the sequence. |
27
+ | `row_id` | object | A unique identifier for the landmark within the frame. |
28
+ | `type` | object | The type of landmark (`face`, `left_hand`, `right_hand`, `pose`). |
29
+ | `landmark_index` | int16 | The index of the landmark within its type. |
30
+ | `x` | float64 | The normalized x-coordinate of the landmark. |
31
+ | `y` | float64 | The normalized y-coordinate of the landmark. |
32
+ | `z` | float64 | The normalized z-coordinate of the landmark (depth). |
33
+ | `path` | object | The path to the original source parquet file for the sequence. |
34
+ | `participant_id` | int64 | A unique identifier for the participant (signer). |
35
+ | `sequence_id` | int64 | A unique identifier for the sign sequence. |
36
+ | `sign` | object | The ground truth label for the sign being performed. |
37
+
38
+ ## Curation Process
39
+
40
+ To create a focused dataset for our specific use case, we performed a two-step curation process:
41
+
42
+ 1. **Vocabulary Filtering:** We selected **62 signs** deemed most relevant for describing medical, fire, or intruder emergencies.
43
+ 2. **Participant Filtering:** To create a manageable dataset for rapid prototyping, we constrained the data to sequences from **two distinct participants** who had a balanced distribution of the target signs.
44
+
45
+ This process resulted in a final dataset containing **1,719 unique sign sequences**, comprising over 37 million landmark rows.
46
+
47
+ ## Usage
48
+
49
+ We recommend using the Parquet file for faster loading times.
50
+
51
+ ```python
52
+ import pandas as pd
53
+
54
+ # Load the full curated dataset
55
+ df = pd.read_parquet('claris_curated_dataset.parquet')
56
+
57
+ # Or load the smaller, subsampled version
58
+ df_sample = pd.read_parquet('claris_subsample_dataset.parquet')
59
+
60
+ print(df.head())
61
+ ```
62
+
63
+ ## Link to Project Notebook
64
+
65
+ The complete methodology, including data preprocessing, model training, and analysis, can be found in our Kaggle notebook:
66
+ https://www.kaggle.com/code/eveelyn/datathon2025-dem
claris_curated_dataset.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:46d6eb5d6732829787388e6c076bd6d43856a75a2ac3416671b5fb939da81f4e
3
+ size 5502322614
dataset_infos.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "claris_emergency_signs": {
3
+ "description": "A curated subset of the Google Isolated Sign Language Recognition dataset, filtered to 62 critical emergency-related signs from two participants.",
4
+ "citation": "@misc{claris_dataset_2024, author={Dama D. Daliman, Evelyn Yosiana, Micky Valentino}, title={CLARIS - Critical Emergency Sign Language Dataset}, year={2024}, publisher={Hugging Face}, url={[Link to your Hugging Face Repo]}}",
5
+ "homepage": "[Link to your Hugging Face Repo]",
6
+ "license": "mit",
7
+ "features": {
8
+ "frame": {
9
+ "dtype": "int16",
10
+ "_type": "Value"
11
+ },
12
+ "row_id": {
13
+ "dtype": "string",
14
+ "_type": "Value"
15
+ },
16
+ "type": {
17
+ "dtype": "string",
18
+ "_type": "Value"
19
+ },
20
+ "landmark_index": {
21
+ "dtype": "int16",
22
+ "_type": "Value"
23
+ },
24
+ "x": {
25
+ "dtype": "float64",
26
+ "_type": "Value"
27
+ },
28
+ "y": {
29
+ "dtype": "float64",
30
+ "_type": "Value"
31
+ },
32
+ "z": {
33
+ "dtype": "float64",
34
+ "_type": "Value"
35
+ },
36
+ "path": {
37
+ "dtype": "string",
38
+ "_type": "Value"
39
+ },
40
+ "participant_id": {
41
+ "dtype": "int64",
42
+ "_type": "Value"
43
+ },
44
+ "sequence_id": {
45
+ "dtype": "int64",
46
+ "_type": "Value"
47
+ },
48
+ "sign": {
49
+ "dtype": "string",
50
+ "_type": "Value"
51
+ }
52
+ },
53
+ "splits": {
54
+ "train": {
55
+ "name": "train",
56
+ "num_bytes": 5120000000,
57
+ "num_examples": 1719,
58
+ "dataset_name": "claris_emergency_signs"
59
+ }
60
+ },
61
+ "download_size": 5120000000,
62
+ "dataset_size": 5120000000
63
+ }
64
+ }
vocabulary.txt ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ bad
2
+ can
3
+ close
4
+ cry
5
+ cut
6
+ down
7
+ drop
8
+ fall
9
+ fast
10
+ find
11
+ give
12
+ go
13
+ have
14
+ haveto
15
+ hear
16
+ hide
17
+ high
18
+ hot
19
+ jump
20
+ look
21
+ loud
22
+ mad
23
+ no
24
+ not
25
+ now
26
+ open
27
+ owie
28
+ quiet
29
+ see
30
+ sick
31
+ stuck
32
+ talk
33
+ time
34
+ touch
35
+ up
36
+ wait
37
+ will
38
+ yes
39
+ arm
40
+ child
41
+ dad
42
+ eye
43
+ face
44
+ fireman
45
+ head
46
+ hesheit
47
+ man
48
+ mom
49
+ person
50
+ police
51
+ car
52
+ glasswindow
53
+ home
54
+ outside
55
+ room
56
+ stairs
57
+ water
58
+ where
59
+ who
60
+ why