SamuelM0422 commited on
Commit
5a969cd
·
verified ·
1 Parent(s): 149ab33

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +50 -0
README.md CHANGED
@@ -1,4 +1,23 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  dataset_info:
3
  features:
4
  - name: id_subsistema
@@ -21,3 +40,34 @@ configs:
21
  - split: train
22
  path: data/train-*
23
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ dataset_name: hourly-load-curve-ons
3
+ tags:
4
+ - energy
5
+ - electricity
6
+ - power-grid
7
+ - time-series
8
+ - hourly
9
+ - Brazil
10
+ - smart-grid
11
+ - ons
12
+ license: cc-by-4.0
13
+ language:
14
+ - en
15
+ - pt
16
+ pretty_name: Hourly Load Curve - ONS (Brazil)
17
+ task_categories:
18
+ - time-series-forecasting
19
+ size_categories:
20
+ - 10M<n<100M
21
  dataset_info:
22
  features:
23
  - name: id_subsistema
 
40
  - split: train
41
  path: data/train-*
42
  ---
43
+
44
+ # 🇧🇷 Hourly Load Curve - ONS (Brazil)
45
+
46
+ This dataset contains hourly electricity load data for Brazil, published by the **ONS - National Electric System Operator**. It spans from the year 2000 to the present (currently 2025), with continuous updates.
47
+
48
+ ## 📌 Description
49
+
50
+ The data represents the **hourly electricity demand** profile across the Brazilian National Interconnected System (SIN). It is especially suitable for:
51
+
52
+ - Electricity load forecasting
53
+ - Energy demand pattern analysis
54
+ - Time series and machine learning modeling
55
+ - Smart grid simulation and optimization
56
+ - Academic research and planning studies
57
+
58
+ ## 🗃️ Dataset Structure
59
+
60
+ The data is provided in `.csv`, `.xlsx`, and `.parquet` formats and organized by year (2000–2025). Each row corresponds to a specific hour of a year and includes:
61
+
62
+ - Date and time
63
+ - Total load of the SIN
64
+ - Load per subsystem (SE/CO, South, North, Northeast)
65
+
66
+ ## 🧪 Example Usage
67
+
68
+ ```python
69
+ import pandas as pd
70
+
71
+ # Load one year of hourly data
72
+ df = pd.read_parquet("CurvaCarga-2023.parquet")
73
+ print(df.head())