Upload modelforseminat_v3.py with huggingface_hub
Browse files- modelforseminat_v3.py +1543 -0
modelforseminat_v3.py
ADDED
@@ -0,0 +1,1543 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import OlmoModel, OlmoForCausalLM, AutoTokenizer
|
2 |
+
from transformers.models.auto.modeling_auto import MODEL_FOR_IMAGE_TEXT_TO_TEXT_MAPPING_NAMES
|
3 |
+
from transformers.modeling_outputs import (
|
4 |
+
CausalLMOutputWithPast,
|
5 |
+
BaseModelOutputWithPast,
|
6 |
+
)
|
7 |
+
import numpy as np
|
8 |
+
import math
|
9 |
+
from torch import nn
|
10 |
+
import pandas as pd
|
11 |
+
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
12 |
+
from dataclasses import dataclass
|
13 |
+
|
14 |
+
# Olmo
|
15 |
+
from transformers.models.olmo.configuration_olmo import OlmoConfig
|
16 |
+
from transformers.models.olmo.modeling_olmo import OlmoMLP, OlmoAttention, apply_rotary_pos_emb, repeat_kv, OlmoRotaryEmbedding, OlmoMLP
|
17 |
+
from transformers.models.olmo.configuration_olmo import OlmoConfig
|
18 |
+
|
19 |
+
# Olmoe
|
20 |
+
from transformers.models.olmoe.modeling_olmoe import OlmoeRMSNorm
|
21 |
+
# from transformers.models.olmoe.configuration_olmoe import OlmoeConfig
|
22 |
+
# from transformers.models.olmoe.modeling_olmoe import OlmoeMLP, OlmoeAttention, OlmoeFlashAttention2, OlmoeSdpaAttention, OlmoeRMSNorm, OlmoeSparseMoeBlock, apply_rotary_pos_emb, repeat_kv, OlmoeRotaryEmbedding
|
23 |
+
# from transformers.models.olmoe.configuration_olmoe import OlmoeConfig
|
24 |
+
|
25 |
+
import os
|
26 |
+
import sys
|
27 |
+
import json
|
28 |
+
import pdb
|
29 |
+
import torch.distributed as dist
|
30 |
+
from tqdm import tqdm
|
31 |
+
from torch.utils.data.distributed import DistributedSampler
|
32 |
+
import transformers
|
33 |
+
import pickle
|
34 |
+
from dataset import *
|
35 |
+
from peft import (get_peft_model, PeftModel)
|
36 |
+
import random
|
37 |
+
from config import *
|
38 |
+
from datasets import Dataset, DatasetDict, load_dataset
|
39 |
+
import wandb
|
40 |
+
import argparse
|
41 |
+
import torch
|
42 |
+
import torch.nn as nn
|
43 |
+
import torch.nn.functional as F
|
44 |
+
import torch.optim as optim
|
45 |
+
import functools
|
46 |
+
from torch.optim.lr_scheduler import StepLR
|
47 |
+
import torch.nn.functional as F
|
48 |
+
import torch.distributed as dist
|
49 |
+
import torch.multiprocessing as mp
|
50 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
51 |
+
from torch.utils.data.distributed import DistributedSampler
|
52 |
+
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
|
53 |
+
checkpoint_wrapper, CheckpointImpl)
|
54 |
+
from torch.distributed.fsdp import (
|
55 |
+
FullyShardedDataParallel as FSDP,
|
56 |
+
MixedPrecision,
|
57 |
+
BackwardPrefetch,
|
58 |
+
ShardingStrategy,
|
59 |
+
FullStateDictConfig,
|
60 |
+
StateDictType,
|
61 |
+
)
|
62 |
+
from torch.distributed.fsdp.wrap import (
|
63 |
+
transformer_auto_wrap_policy,
|
64 |
+
enable_wrap,
|
65 |
+
wrap,
|
66 |
+
)
|
67 |
+
from functools import partial
|
68 |
+
from torch.utils.data import DataLoader
|
69 |
+
from pathlib import Path
|
70 |
+
from typing import Type, List, Optional, Tuple, Union, Callable, Dict, Any
|
71 |
+
|
72 |
+
|
73 |
+
############ specially for generate() #################
|
74 |
+
import inspect
|
75 |
+
from transformers.generation.configuration_utils import (
|
76 |
+
NEED_SETUP_CACHE_CLASSES_MAPPING,
|
77 |
+
QUANT_BACKEND_CLASSES_MAPPING,
|
78 |
+
GenerationConfig,
|
79 |
+
GenerationMode,
|
80 |
+
)
|
81 |
+
from transformers.generation.logits_process import LogitsProcessorList
|
82 |
+
from transformers.generation.stopping_criteria import StoppingCriteriaList
|
83 |
+
from transformers.integrations.deepspeed import is_deepspeed_zero3_enabled
|
84 |
+
from transformers.integrations.fsdp import is_fsdp_managed_module
|
85 |
+
|
86 |
+
from transformers.generation.utils import (
|
87 |
+
is_torchdynamo_compiling, ModelOutput, GenerateDecoderOnlyOutput,
|
88 |
+
GenerateEncoderDecoderOutput, GenerateBeamDecoderOnlyOutput,
|
89 |
+
GenerateBeamEncoderDecoderOutput, GreedySearchDecoderOnlyOutput,
|
90 |
+
ContrastiveSearchDecoderOnlyOutput, SampleDecoderOnlyOutput,
|
91 |
+
ContrastiveSearchEncoderDecoderOutput, GreedySearchEncoderDecoderOutput,
|
92 |
+
SampleEncoderDecoderOutput, BeamSearchDecoderOnlyOutput,
|
93 |
+
BeamSampleDecoderOnlyOutput, BeamSearchEncoderDecoderOutput,
|
94 |
+
BeamSampleEncoderDecoderOutput, GreedySearchOutput, SampleOutput,
|
95 |
+
BeamSearchOutput, BeamSampleOutput, ContrastiveSearchOutput,
|
96 |
+
GenerateNonBeamOutput, GenerateBeamOutput, GenerateOutput)
|
97 |
+
|
98 |
+
############ specially for generate() #################
|
99 |
+
|
100 |
+
|
101 |
+
@dataclass
|
102 |
+
class ModelOutputWithPastForSemiNAT(BaseModelOutputWithPast):
|
103 |
+
|
104 |
+
chunk_hidden_state: torch.FloatTensor = None
|
105 |
+
length_ground_truth: Optional[torch.FloatTensor] = None
|
106 |
+
length_logits: Optional[torch.FloatTensor] = None
|
107 |
+
position_embeddings: Optional[torch.FloatTensor] = None # ?
|
108 |
+
nar_hidden_state: torch.FloatTensor = None # ?
|
109 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
110 |
+
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
111 |
+
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
112 |
+
|
113 |
+
|
114 |
+
class OlmoAttentionForSemiNAT(nn.Module):
|
115 |
+
|
116 |
+
def __init__(
|
117 |
+
self,
|
118 |
+
config: OlmoConfig,
|
119 |
+
layer_idx: Optional[int] = None,
|
120 |
+
):
|
121 |
+
super().__init__()
|
122 |
+
self.config = config
|
123 |
+
self.layer_idx = layer_idx
|
124 |
+
if layer_idx is None:
|
125 |
+
print(
|
126 |
+
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` will lead to errors during the forward call if caching is used."
|
127 |
+
)
|
128 |
+
self.attention_dropout = config.attention_dropout
|
129 |
+
self.hidden_size = config.hidden_size
|
130 |
+
self.num_heads = config.num_attention_heads
|
131 |
+
self.head_dim = self.hidden_size // self.num_heads
|
132 |
+
|
133 |
+
# GQA
|
134 |
+
# n_k_v_h is the number of key/value heads
|
135 |
+
# n_k_v_g is the number of query heads per k/v head
|
136 |
+
self.num_key_value_heads = config.num_key_value_heads
|
137 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
138 |
+
|
139 |
+
self.max_position_embeddings = config.max_position_embeddings
|
140 |
+
self.rope_theta = config.rope_theta
|
141 |
+
|
142 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
143 |
+
raise ValueError(
|
144 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
145 |
+
f" and `num_heads`: {self.num_heads}).")
|
146 |
+
|
147 |
+
self.q_proj = nn.Linear(self.hidden_size,
|
148 |
+
self.num_heads * self.head_dim,
|
149 |
+
bias=config.attention_bias)
|
150 |
+
self.k_proj = nn.Linear(self.hidden_size,
|
151 |
+
self.num_key_value_heads * self.head_dim,
|
152 |
+
bias=config.attention_bias)
|
153 |
+
self.v_proj = nn.Linear(self.hidden_size,
|
154 |
+
self.num_key_value_heads * self.head_dim,
|
155 |
+
bias=config.attention_bias)
|
156 |
+
self.o_proj = nn.Linear(self.hidden_size,
|
157 |
+
self.hidden_size,
|
158 |
+
bias=config.attention_bias)
|
159 |
+
# pdb.set_trace()
|
160 |
+
self.q_norm = OlmoeRMSNorm(self.hidden_size, eps=config.rms_norm_eps)
|
161 |
+
self.k_norm = OlmoeRMSNorm(
|
162 |
+
(self.hidden_size // self.num_heads) * self.num_key_value_heads,
|
163 |
+
eps=config.rms_norm_eps)
|
164 |
+
|
165 |
+
def forward(
|
166 |
+
self,
|
167 |
+
hidden_states: torch.Tensor,
|
168 |
+
attention_mask: Optional[torch.Tensor] = None,
|
169 |
+
past_key_value: Optional[Cache] = None,
|
170 |
+
output_attentions: bool = False,
|
171 |
+
cache_position: Optional[torch.LongTensor] = None,
|
172 |
+
position_embeddings: Optional[Tuple[torch.Tensor,
|
173 |
+
torch.Tensor]] = None,
|
174 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor],
|
175 |
+
Optional[Tuple[torch.Tensor]]]:
|
176 |
+
bsz, q_len, _ = hidden_states.size() # bs * length * hidden_size
|
177 |
+
query_states = self.q_norm(
|
178 |
+
self.q_proj(hidden_states)) # bs * length * hidden_size
|
179 |
+
key_states = self.k_norm(self.k_proj(
|
180 |
+
hidden_states)) # bs * length * (num_key_value_heads * head_dim)
|
181 |
+
value_states = self.v_proj(
|
182 |
+
hidden_states) # bs * length * (num_key_value_heads * head_dim)
|
183 |
+
|
184 |
+
if self.config.clip_qkv is not None:
|
185 |
+
query_states.clamp_(min=-self.config.clip_qkv,
|
186 |
+
max=self.config.clip_qkv)
|
187 |
+
key_states.clamp_(min=-self.config.clip_qkv,
|
188 |
+
max=self.config.clip_qkv)
|
189 |
+
value_states.clamp_(min=-self.config.clip_qkv,
|
190 |
+
max=self.config.clip_qkv)
|
191 |
+
|
192 |
+
# 拆成各个头
|
193 |
+
query_states = query_states.view(
|
194 |
+
bsz, q_len, self.num_heads,
|
195 |
+
self.head_dim).transpose(1,
|
196 |
+
2) # bs * num_heads * length * head_dim
|
197 |
+
key_states = key_states.view(
|
198 |
+
bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(
|
199 |
+
1, 2) # bs * num_key_value_heads * length * head_dim
|
200 |
+
value_states = value_states.view(
|
201 |
+
bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(
|
202 |
+
1, 2) # bs * num_key_value_heads * length * head_dim
|
203 |
+
|
204 |
+
cos, sin = position_embeddings # bs * length * head_dim
|
205 |
+
query_states, key_states = apply_rotary_pos_emb(
|
206 |
+
query_states, key_states, cos,
|
207 |
+
sin) # bs * num_heads (or num_key_value_heads) * length * head_dim
|
208 |
+
|
209 |
+
# TODO: check 一下 past_key_value.update 的具体实现(specific to RoPE)
|
210 |
+
if past_key_value is not None:
|
211 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
212 |
+
cache_kwargs = {
|
213 |
+
"sin": sin,
|
214 |
+
"cos": cos,
|
215 |
+
"cache_position": cache_position
|
216 |
+
}
|
217 |
+
key_states, value_states = past_key_value.update(
|
218 |
+
key_states, value_states, self.layer_idx, cache_kwargs)
|
219 |
+
|
220 |
+
key_states = repeat_kv(
|
221 |
+
key_states,
|
222 |
+
self.num_key_value_groups) # bs * num_heads * length * head_dim
|
223 |
+
value_states = repeat_kv(
|
224 |
+
value_states,
|
225 |
+
self.num_key_value_groups) # bs * num_heads * length * head_dim
|
226 |
+
attn_weights = torch.matmul(
|
227 |
+
query_states, key_states.transpose(2, 3)) / math.sqrt(
|
228 |
+
self.head_dim) # bs * num_heads * length * length
|
229 |
+
|
230 |
+
# try:
|
231 |
+
# TODO: check attention_mask 传进来的内容
|
232 |
+
if attention_mask is not None: # no matter the length, we just slice it
|
233 |
+
causal_mask = attention_mask[:, :, :, :key_states.shape[
|
234 |
+
-2]] # bs * 1 * (q_)length * (k_)length
|
235 |
+
attn_weights = attn_weights + causal_mask
|
236 |
+
# except:
|
237 |
+
# pdb.set_trace()
|
238 |
+
|
239 |
+
attn_weights = nn.functional.softmax(
|
240 |
+
attn_weights, dim=-1, dtype=torch.float32).to(
|
241 |
+
query_states.dtype) # bs * num_heads * length * length
|
242 |
+
attn_weights = nn.functional.dropout(
|
243 |
+
attn_weights, p=self.attention_dropout,
|
244 |
+
training=self.training) # bs * num_heads * length * length
|
245 |
+
attn_output = torch.matmul(
|
246 |
+
attn_weights, value_states) # bs * num_heads * length * head_dim
|
247 |
+
|
248 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
249 |
+
raise ValueError(
|
250 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
251 |
+
f" {attn_output.size()}")
|
252 |
+
|
253 |
+
attn_output = attn_output.transpose(
|
254 |
+
1, 2).contiguous() # bs * length * num_heads * head_dim
|
255 |
+
attn_output = attn_output.reshape(
|
256 |
+
bsz, q_len, self.hidden_size) # bs * length * hidden_size
|
257 |
+
attn_output = self.o_proj(attn_output) # bs * length * hidden_size
|
258 |
+
|
259 |
+
if not output_attentions:
|
260 |
+
attn_weights = None
|
261 |
+
return attn_output, attn_weights, past_key_value
|
262 |
+
|
263 |
+
|
264 |
+
class OlmoDecoderLayerForSemiNAT(nn.Module):
|
265 |
+
|
266 |
+
def __init__(
|
267 |
+
self,
|
268 |
+
config: OlmoConfig,
|
269 |
+
layer_idx: int,
|
270 |
+
):
|
271 |
+
super().__init__()
|
272 |
+
self.hidden_size = config.hidden_size
|
273 |
+
self.self_attn = OlmoAttentionForSemiNAT(config=config,
|
274 |
+
layer_idx=layer_idx)
|
275 |
+
self.mlp = OlmoMLP(config)
|
276 |
+
self.input_layernorm = OlmoeRMSNorm(config.hidden_size,
|
277 |
+
eps=config.rms_norm_eps)
|
278 |
+
self.post_attention_layernorm = OlmoeRMSNorm(config.hidden_size,
|
279 |
+
eps=config.rms_norm_eps)
|
280 |
+
|
281 |
+
def forward(
|
282 |
+
self,
|
283 |
+
hidden_states: torch.Tensor,
|
284 |
+
attention_mask: Optional[torch.Tensor] = None,
|
285 |
+
past_key_value: Optional[Cache] = None,
|
286 |
+
output_attentions: Optional[bool] = False,
|
287 |
+
use_cache: Optional[bool] = False,
|
288 |
+
cache_position: Optional[torch.LongTensor] = None,
|
289 |
+
position_embeddings: Optional[Tuple[torch.Tensor,
|
290 |
+
torch.Tensor]] = None,
|
291 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor,
|
292 |
+
torch.FloatTensor]]]:
|
293 |
+
"""
|
294 |
+
attention_mask: (bs, seq_len) if flash attention or (bs, 1, q_seq_len, k_seq_len) if default
|
295 |
+
|
296 |
+
past_key_value: Tuple(torch.FloatTensor)
|
297 |
+
|
298 |
+
position_embeddings `Tuple[torch.FloatTensor, torch.FloatTensor]`, cos and sin of shape (batch_size, seq_len, head_dim)
|
299 |
+
"""
|
300 |
+
|
301 |
+
residual = hidden_states # bs * length * hidden_size
|
302 |
+
# pdb.set_trace()
|
303 |
+
hidden_states = self.input_layernorm(hidden_states)
|
304 |
+
|
305 |
+
# Self Attention
|
306 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
307 |
+
hidden_states=hidden_states,
|
308 |
+
attention_mask=attention_mask,
|
309 |
+
past_key_value=past_key_value,
|
310 |
+
output_attentions=output_attentions,
|
311 |
+
cache_position=cache_position,
|
312 |
+
position_embeddings=position_embeddings,
|
313 |
+
)
|
314 |
+
hidden_states = residual + hidden_states # bs * length * hidden_size
|
315 |
+
|
316 |
+
# MLP
|
317 |
+
residual = hidden_states
|
318 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
319 |
+
hidden_states = self.mlp(hidden_states)
|
320 |
+
hidden_states = residual + hidden_states
|
321 |
+
|
322 |
+
outputs = (hidden_states, )
|
323 |
+
if output_attentions:
|
324 |
+
outputs += (self_attn_weights, )
|
325 |
+
if use_cache:
|
326 |
+
outputs += (present_key_value, )
|
327 |
+
return outputs
|
328 |
+
|
329 |
+
|
330 |
+
class NATEncoderForSemiNAT(nn.Module):
|
331 |
+
|
332 |
+
def __init__(self, config: OlmoConfig, num_layer: int = 1):
|
333 |
+
super().__init__()
|
334 |
+
self.num_layer = num_layer
|
335 |
+
self.encoder_layers = nn.ModuleList([
|
336 |
+
OlmoDecoderLayerForSemiNAT(config, layer_idx)
|
337 |
+
for layer_idx in range(self.num_layer)
|
338 |
+
])
|
339 |
+
|
340 |
+
def forward(
|
341 |
+
self,
|
342 |
+
hidden_states: torch.Tensor,
|
343 |
+
attention_mask: Optional[torch.Tensor] = None,
|
344 |
+
past_key_value: Optional[Cache] = None,
|
345 |
+
output_attentions: Optional[bool] = False,
|
346 |
+
use_cache: Optional[bool] = False,
|
347 |
+
cache_position: Optional[torch.LongTensor] = None,
|
348 |
+
position_embeddings: Optional[Tuple[torch.Tensor,
|
349 |
+
torch.Tensor]] = None,
|
350 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor,
|
351 |
+
torch.FloatTensor]]]:
|
352 |
+
# pdb.set_trace()
|
353 |
+
for layer in self.encoder_layers:
|
354 |
+
outputs = layer(hidden_states=hidden_states,
|
355 |
+
output_attentions=output_attentions,
|
356 |
+
position_embeddings=position_embeddings)
|
357 |
+
hidden_states = outputs[0]
|
358 |
+
# only the last layer attn_weights and present_key_value are stored
|
359 |
+
# mean pool the hidden states across sequence (chunk)
|
360 |
+
hidden_states = torch.mean(hidden_states, dim=1)
|
361 |
+
return hidden_states
|
362 |
+
|
363 |
+
|
364 |
+
class NATDecoderForSemiNAT(nn.Module):
|
365 |
+
|
366 |
+
def __init__(self, config: OlmoConfig, num_layer: int = 1):
|
367 |
+
super().__init__()
|
368 |
+
self.num_layer = num_layer
|
369 |
+
self.decoder_layers = nn.ModuleList([
|
370 |
+
OlmoDecoderLayerForSemiNAT(config, layer_idx)
|
371 |
+
for layer_idx in range(self.num_layer)
|
372 |
+
])
|
373 |
+
|
374 |
+
def forward(
|
375 |
+
self,
|
376 |
+
hidden_states: torch.Tensor,
|
377 |
+
attention_mask: Optional[torch.Tensor] = None,
|
378 |
+
past_key_value: Optional[Cache] = None,
|
379 |
+
output_attentions: Optional[bool] = False,
|
380 |
+
use_cache: Optional[bool] = False,
|
381 |
+
cache_position: Optional[torch.LongTensor] = None,
|
382 |
+
position_embeddings: Optional[Tuple[torch.Tensor,
|
383 |
+
torch.Tensor]] = None,
|
384 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor,
|
385 |
+
torch.FloatTensor]]]:
|
386 |
+
|
387 |
+
for layer in self.decoder_layers:
|
388 |
+
# pdb.set_trace()
|
389 |
+
outputs = layer(hidden_states=hidden_states,
|
390 |
+
output_attentions=output_attentions,
|
391 |
+
position_embeddings=position_embeddings)
|
392 |
+
hidden_states = outputs[0]
|
393 |
+
return hidden_states
|
394 |
+
|
395 |
+
|
396 |
+
class OlmoModelForSemiNAT(OlmoModel):
|
397 |
+
|
398 |
+
def __init__(self, config):
|
399 |
+
super().__init__(config)
|
400 |
+
self.layers = nn.ModuleList([
|
401 |
+
OlmoDecoderLayerForSemiNAT(config, layer_idx)
|
402 |
+
for layer_idx in range(config.num_hidden_layers)
|
403 |
+
])
|
404 |
+
|
405 |
+
self.decoder = NATDecoderForSemiNAT(config, 1)
|
406 |
+
self.encoder = NATEncoderForSemiNAT(config, 1)
|
407 |
+
self.chunk_size_limit = config.chunk_size_limit
|
408 |
+
|
409 |
+
# self.decoder = NATDecoderForSemiNAT(config, 1)
|
410 |
+
self.length_predictor = nn.Linear(config.hidden_size,
|
411 |
+
self.chunk_size_limit)
|
412 |
+
|
413 |
+
def forward(
|
414 |
+
self,
|
415 |
+
input_ids: torch.LongTensor = None,
|
416 |
+
attention_mask: Optional[torch.Tensor] = None,
|
417 |
+
position_ids: Optional[torch.LongTensor] = None,
|
418 |
+
slice_pos: torch.Tensor = None,
|
419 |
+
past_key_values: Optional[Union[Cache,
|
420 |
+
List[torch.FloatTensor]]] = None,
|
421 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
422 |
+
use_cache: Optional[bool] = None,
|
423 |
+
output_attentions: Optional[bool] = None,
|
424 |
+
output_hidden_states: Optional[bool] = None,
|
425 |
+
cache_position: Optional[torch.LongTensor] = None,
|
426 |
+
inference: Optional[bool] = None,
|
427 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
428 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
429 |
+
output_hidden_states = (output_hidden_states
|
430 |
+
if output_hidden_states is not None else
|
431 |
+
self.config.output_hidden_states)
|
432 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
433 |
+
|
434 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
435 |
+
raise ValueError(
|
436 |
+
"You must specify exactly one of input_ids or inputs_embeds")
|
437 |
+
|
438 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
439 |
+
print(
|
440 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
441 |
+
)
|
442 |
+
use_cache = False
|
443 |
+
|
444 |
+
if inputs_embeds is None:
|
445 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
446 |
+
|
447 |
+
# kept for BC (non `Cache` `past_key_values` inputs)
|
448 |
+
return_legacy_cache = False
|
449 |
+
|
450 |
+
if use_cache and not isinstance(past_key_values, Cache):
|
451 |
+
return_legacy_cache = True
|
452 |
+
if past_key_values is None:
|
453 |
+
past_key_values = DynamicCache()
|
454 |
+
else:
|
455 |
+
past_key_values = DynamicCache.from_legacy_cache(
|
456 |
+
past_key_values)
|
457 |
+
print(
|
458 |
+
"Passing `past_key_values` as a tuple of tuples has been deprecated."
|
459 |
+
)
|
460 |
+
if cache_position is None:
|
461 |
+
past_seen_tokens = past_key_values.get_seq_length(
|
462 |
+
) if past_key_values is not None else 0
|
463 |
+
cache_position = torch.arange(
|
464 |
+
past_seen_tokens,
|
465 |
+
past_seen_tokens + inputs_embeds.shape[1],
|
466 |
+
device=inputs_embeds.device # 0-255, length
|
467 |
+
)
|
468 |
+
|
469 |
+
if position_ids is None:
|
470 |
+
position_ids = cache_position.unsqueeze(0) #0-255, length
|
471 |
+
|
472 |
+
if inference:
|
473 |
+
position_ids = cache_position.unsqueeze(0)
|
474 |
+
|
475 |
+
position_embeddings = self.rotary_emb(inputs_embeds, position_ids)
|
476 |
+
|
477 |
+
all_hidden_states = () if output_hidden_states else None
|
478 |
+
all_self_attns = () if output_attentions else None
|
479 |
+
next_decoder_cache = None
|
480 |
+
|
481 |
+
# pdb.set_trace()
|
482 |
+
|
483 |
+
# initialize chunk inputs as embedding of [pad]
|
484 |
+
pad_token_id = 1
|
485 |
+
batch_size, seq_len, hidden_size = inputs_embeds.shape
|
486 |
+
pad_embedding = self.embed_tokens(
|
487 |
+
torch.tensor([pad_token_id]).to(inputs_embeds.device)) # 1, 2048
|
488 |
+
# pad_chunk_emb = self.encoder(
|
489 |
+
# pad_embedding.unsqueeze(0),
|
490 |
+
# attention_mask=None,
|
491 |
+
# position_embeddings=position_embeddings[:, :1, :],
|
492 |
+
# ) # 1 * 1 * hidden_size
|
493 |
+
chunk_inputs_embeds = pad_embedding.expand(
|
494 |
+
batch_size, seq_len, hidden_size).clone().to(
|
495 |
+
inputs_embeds.device) # bs * length * hidden_size 预填充
|
496 |
+
|
497 |
+
# 遍历 batch 和序列
|
498 |
+
length_ground_truth = []
|
499 |
+
chunk_attention_mask = []
|
500 |
+
chunk_labels = []
|
501 |
+
# max_chunk_num = 0
|
502 |
+
accumu_num = 0
|
503 |
+
slice_nums = []
|
504 |
+
|
505 |
+
# pdb.set_trace()
|
506 |
+
for b in range(batch_size):
|
507 |
+
slice_num = 0
|
508 |
+
start_position = 0
|
509 |
+
slice_length = []
|
510 |
+
for i in range(seq_len):
|
511 |
+
cut = slice_pos[b, i].item() # 获取切分点
|
512 |
+
if cut == -1: # 如果切分点为 -1,表示不切分
|
513 |
+
pass
|
514 |
+
else:
|
515 |
+
cut += 1 # +1表示在后面切一刀
|
516 |
+
# pdb.set_trace()
|
517 |
+
chunk_inputs_embeds[b, i] = self.encoder(
|
518 |
+
inputs_embeds[b, start_position:cut].unsqueeze(0),
|
519 |
+
position_embeddings=tuple(
|
520 |
+
tensor[0, start_position:cut, :].unsqueeze(0)
|
521 |
+
for tensor in position_embeddings))
|
522 |
+
slice_num += 1
|
523 |
+
slice_length.append(cut - start_position)
|
524 |
+
if cut - start_position > 10 or cut - start_position < 0:
|
525 |
+
pdb.set_trace()
|
526 |
+
start_position = cut # 更新切分起点
|
527 |
+
slice_nums.append(slice_num) # 每个样本的 chunk 数量
|
528 |
+
# max_chunk_num = max(max_chunk_num, slice_num) # 不用这个,直接用累计的chunk num
|
529 |
+
accumu_num += slice_num
|
530 |
+
chunk_attention_mask.append(
|
531 |
+
torch.tensor([1] * slice_num + [0] *
|
532 |
+
(seq_len - slice_num)).unsqueeze(
|
533 |
+
0)) # 1表示切分,0表示不切分
|
534 |
+
length_ground_truth.append(
|
535 |
+
torch.tensor(slice_length + [-100] *
|
536 |
+
(seq_len - slice_num)).unsqueeze(0)) # -100表示不切分
|
537 |
+
accumu_num -= batch_size
|
538 |
+
# pdb.set_trace()
|
539 |
+
|
540 |
+
chunk_attention_mask = torch.cat(chunk_attention_mask, dim=0).to(
|
541 |
+
inputs_embeds.device) # torch.Size([1, 256]) bs * length
|
542 |
+
|
543 |
+
length_ground_truth = torch.cat(length_ground_truth,
|
544 |
+
dim=0).to(inputs_embeds.device)
|
545 |
+
|
546 |
+
# only slice the first max_chunk_num chunks for each sample
|
547 |
+
# chunk_inputs_embeds = chunk_inputs_embeds[:, :max_chunk_num, :]
|
548 |
+
# chunk_attention_mask = chunk_attention_mask[:, :max_chunk_num]
|
549 |
+
# length_ground_truth = length_ground_truth[:max_chunk_num]
|
550 |
+
|
551 |
+
chunk_cache_position = cache_position
|
552 |
+
chunk_position_embeddings = self.rotary_emb(
|
553 |
+
chunk_inputs_embeds, position_ids
|
554 |
+
) # tuple, 第一个元素为 torch.Size([1, 256, 128]),最后一个维度是 hidden_size / head , cos 和 sin 各 64 维
|
555 |
+
|
556 |
+
hidden_states = chunk_inputs_embeds # bs * max_chunk_num * hidden_size
|
557 |
+
|
558 |
+
# pdb.set_trace()
|
559 |
+
|
560 |
+
if inference:
|
561 |
+
# inference 把填充去掉
|
562 |
+
mask_bool = chunk_attention_mask.bool()
|
563 |
+
chunk_inputs_embeds = chunk_inputs_embeds[mask_bool.unsqueeze(
|
564 |
+
-1).expand_as(chunk_inputs_embeds)].view(
|
565 |
+
chunk_inputs_embeds.size(0), -1,
|
566 |
+
chunk_inputs_embeds.size(2))
|
567 |
+
chunk_attention_mask = chunk_attention_mask[mask_bool].view(
|
568 |
+
chunk_attention_mask.size(0), -1)
|
569 |
+
|
570 |
+
# pdb.set_trace()
|
571 |
+
chunk_inputs_embeds = chunk_inputs_embeds[:,
|
572 |
+
chunk_cache_position, :]
|
573 |
+
chunk_attention_mask = chunk_attention_mask[:,
|
574 |
+
chunk_cache_position]
|
575 |
+
|
576 |
+
hidden_states = chunk_inputs_embeds
|
577 |
+
|
578 |
+
causal_mask = self._update_causal_mask(chunk_attention_mask,
|
579 |
+
chunk_inputs_embeds,
|
580 |
+
chunk_cache_position,
|
581 |
+
past_key_values,
|
582 |
+
output_attentions)
|
583 |
+
|
584 |
+
# pdb.set_trace()
|
585 |
+
for decoder_layer in self.layers:
|
586 |
+
if output_hidden_states:
|
587 |
+
all_hidden_states += (hidden_states, )
|
588 |
+
if self.gradient_checkpointing and self.training:
|
589 |
+
layer_outputs = self._gradient_checkpointing_func(
|
590 |
+
decoder_layer.__call__,
|
591 |
+
hidden_states,
|
592 |
+
causal_mask,
|
593 |
+
position_ids,
|
594 |
+
past_key_values,
|
595 |
+
output_attentions,
|
596 |
+
use_cache,
|
597 |
+
cache_position,
|
598 |
+
chunk_position_embeddings,
|
599 |
+
)
|
600 |
+
else:
|
601 |
+
layer_outputs = decoder_layer(
|
602 |
+
hidden_states,
|
603 |
+
attention_mask=causal_mask,
|
604 |
+
# position_ids=position_ids,
|
605 |
+
past_key_value=past_key_values,
|
606 |
+
output_attentions=output_attentions,
|
607 |
+
use_cache=use_cache,
|
608 |
+
cache_position=cache_position,
|
609 |
+
position_embeddings=chunk_position_embeddings,
|
610 |
+
)
|
611 |
+
|
612 |
+
hidden_states = layer_outputs[0]
|
613 |
+
|
614 |
+
if use_cache:
|
615 |
+
next_decoder_cache = layer_outputs[
|
616 |
+
2 if output_attentions else 1]
|
617 |
+
if output_attentions:
|
618 |
+
all_self_attns += (layer_outputs[1], )
|
619 |
+
|
620 |
+
# pdb.set_trace()
|
621 |
+
# add hidden states from the last decoder layer
|
622 |
+
if output_hidden_states:
|
623 |
+
all_hidden_states += (hidden_states, )
|
624 |
+
|
625 |
+
hidden_states = self.norm(
|
626 |
+
hidden_states) # bs * max_chunk_num * hidden_size 所有chunk的hidden
|
627 |
+
|
628 |
+
# pdb.set_trace()
|
629 |
+
|
630 |
+
# 算长度预测loss
|
631 |
+
self.length_predictor = self.length_predictor.to(
|
632 |
+
hidden_states.device).to(torch.bfloat16) #这里强行变成了bf16,因为训练是这个
|
633 |
+
length_logits = self.length_predictor(
|
634 |
+
hidden_states.to(
|
635 |
+
hidden_states.device)) # bs * length * chunk_size_limit
|
636 |
+
|
637 |
+
# pdb.set_trace()
|
638 |
+
|
639 |
+
next_cache = next_decoder_cache if use_cache else None # DynamicCache()
|
640 |
+
if return_legacy_cache:
|
641 |
+
next_cache = next_cache.to_legacy_cache()
|
642 |
+
|
643 |
+
nar_hidden_states = None
|
644 |
+
if not inference:
|
645 |
+
# NAR decoder
|
646 |
+
bs, length, hidden_size = hidden_states.size()
|
647 |
+
# assert length == max_chunk_num # TODO: remove this
|
648 |
+
|
649 |
+
# shape: (bs * max_chunk_num) * chunk_size_limit * hidden_size
|
650 |
+
nat_input_embeddings = torch.zeros(
|
651 |
+
accumu_num, self.chunk_size_limit,
|
652 |
+
hidden_size).to(hidden_states.device).to(torch.bfloat16)
|
653 |
+
nat_attention_mask = torch.zeros(
|
654 |
+
accumu_num, self.chunk_size_limit).to(hidden_states.device).to(
|
655 |
+
torch.bfloat16)
|
656 |
+
tot_chunk_num = 0
|
657 |
+
for b in range(bs):
|
658 |
+
for i in range(slice_nums[b]):
|
659 |
+
# slice_nums[b] 是每个样本的 chunk 数量
|
660 |
+
# length_ground_truth[b] 是每个样本的真实长度
|
661 |
+
# copy length_ground_truth 份的 hidden_states 到 nat_input_embeddings
|
662 |
+
|
663 |
+
if length_ground_truth[b, i + 1] != -100:
|
664 |
+
nat_input_embeddings[
|
665 |
+
tot_chunk_num, :length_ground_truth[
|
666 |
+
b, i +
|
667 |
+
1], :] = hidden_states[b, i:i + 1, :].expand(
|
668 |
+
length_ground_truth[b, i + 1], hidden_size)
|
669 |
+
nat_attention_mask[tot_chunk_num, :length_ground_truth[
|
670 |
+
b, i + 1]] = torch.tensor(
|
671 |
+
[1] * length_ground_truth[b, i + 1])
|
672 |
+
tot_chunk_num += 1
|
673 |
+
else:
|
674 |
+
break
|
675 |
+
|
676 |
+
nar_chunk_position = torch.arange(
|
677 |
+
1, self.chunk_size_limit + 1).unsqueeze(0).repeat(
|
678 |
+
accumu_num,
|
679 |
+
1).to(hidden_states.device) # bs * max_chunk_num
|
680 |
+
|
681 |
+
nar_position_embeddings = self.rotary_emb(nat_attention_mask,
|
682 |
+
nar_chunk_position)
|
683 |
+
|
684 |
+
# pdb.set_trace()
|
685 |
+
|
686 |
+
self.decoder = self.decoder.to(dtype=torch.bfloat16)
|
687 |
+
|
688 |
+
nar_hidden_states = self.decoder(
|
689 |
+
nat_input_embeddings,
|
690 |
+
attention_mask=nat_attention_mask,
|
691 |
+
position_embeddings=nar_position_embeddings,
|
692 |
+
output_attentions=output_attentions,
|
693 |
+
use_cache=use_cache,
|
694 |
+
cache_position=None,
|
695 |
+
)
|
696 |
+
|
697 |
+
nar_hidden_states = self.norm(
|
698 |
+
nar_hidden_states) # bs * max_chunk_num * hidden_size
|
699 |
+
|
700 |
+
# pdb.set_trace()
|
701 |
+
|
702 |
+
return ModelOutputWithPastForSemiNAT(
|
703 |
+
chunk_hidden_state=hidden_states,
|
704 |
+
length_ground_truth=length_ground_truth,
|
705 |
+
length_logits=length_logits,
|
706 |
+
position_embeddings=position_embeddings,
|
707 |
+
nar_hidden_state=nar_hidden_states,
|
708 |
+
past_key_values=next_cache,
|
709 |
+
hidden_states=all_hidden_states,
|
710 |
+
attentions=all_self_attns,
|
711 |
+
)
|
712 |
+
|
713 |
+
|
714 |
+
|
715 |
+
|
716 |
+
|
717 |
+
class OlmoForCausalLMForSemiNAT(OlmoForCausalLM):
|
718 |
+
|
719 |
+
def __init__(self, config, *args, **kwargs):
|
720 |
+
super().__init__(config, *args, **kwargs)
|
721 |
+
self.model = OlmoModelForSemiNAT(config)
|
722 |
+
self.rotary_emb = OlmoRotaryEmbedding(config=config)
|
723 |
+
self.config = config
|
724 |
+
self.padding_idx = config.pad_token_id
|
725 |
+
self.vocab_size = config.vocab_size
|
726 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size,
|
727 |
+
self.padding_idx)
|
728 |
+
|
729 |
+
self.chunk_size_limit = config.chunk_size_limit
|
730 |
+
|
731 |
+
def forward(
|
732 |
+
self,
|
733 |
+
input_ids: torch.LongTensor = None,
|
734 |
+
attention_mask: Optional[torch.Tensor] = None,
|
735 |
+
position_ids: Optional[torch.LongTensor] = None,
|
736 |
+
slice_pos: Optional[torch.Tensor] = None,
|
737 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
738 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
739 |
+
labels: Optional[torch.LongTensor] = None,
|
740 |
+
use_cache: Optional[bool] = None,
|
741 |
+
output_attentions: Optional[bool] = None,
|
742 |
+
output_hidden_states: Optional[bool] = None,
|
743 |
+
cache_position: Optional[torch.LongTensor] = None,
|
744 |
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
745 |
+
**loss_kwargs,
|
746 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
747 |
+
|
748 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
749 |
+
output_hidden_states = (output_hidden_states
|
750 |
+
if output_hidden_states is not None else
|
751 |
+
self.config.output_hidden_states)
|
752 |
+
|
753 |
+
# pdb.set_trace()
|
754 |
+
|
755 |
+
if labels is not None:
|
756 |
+
outputs = self.model(
|
757 |
+
input_ids=input_ids, # bs * length
|
758 |
+
attention_mask=attention_mask, # bs * length
|
759 |
+
position_ids=position_ids,
|
760 |
+
slice_pos=slice_pos,
|
761 |
+
past_key_values=past_key_values,
|
762 |
+
inputs_embeds=inputs_embeds,
|
763 |
+
use_cache=use_cache,
|
764 |
+
output_attentions=output_attentions,
|
765 |
+
output_hidden_states=output_hidden_states,
|
766 |
+
cache_position=cache_position,
|
767 |
+
)
|
768 |
+
else:
|
769 |
+
outputs = self.model(
|
770 |
+
input_ids=input_ids, # bs * length
|
771 |
+
attention_mask=attention_mask, # bs * length
|
772 |
+
position_ids=position_ids,
|
773 |
+
slice_pos=slice_pos,
|
774 |
+
past_key_values=past_key_values,
|
775 |
+
inputs_embeds=inputs_embeds,
|
776 |
+
use_cache=use_cache,
|
777 |
+
output_attentions=output_attentions,
|
778 |
+
output_hidden_states=output_hidden_states,
|
779 |
+
cache_position=cache_position,
|
780 |
+
inference=True,
|
781 |
+
)
|
782 |
+
|
783 |
+
chunk_hidden_states = outputs.chunk_hidden_state
|
784 |
+
bs, length, hidden_size = chunk_hidden_states.size()
|
785 |
+
|
786 |
+
############################# loss 计算,分两部分 #############################
|
787 |
+
loss = None
|
788 |
+
loss1 = None
|
789 |
+
loss2 = None
|
790 |
+
############################# 首先, 接上mlp,预测长度的loss,维度是10#############################
|
791 |
+
|
792 |
+
if labels is not None:
|
793 |
+
|
794 |
+
length_ground_truth = outputs.length_ground_truth
|
795 |
+
length_logits = outputs.length_logits
|
796 |
+
|
797 |
+
new_length_ground_truth = torch.where(
|
798 |
+
length_ground_truth != -100, # 条件:不等于 -100
|
799 |
+
length_ground_truth - 1, # 如果条件为真,执行 labels - 1
|
800 |
+
length_ground_truth # 否则保持原值
|
801 |
+
)
|
802 |
+
|
803 |
+
# pdb.set_trace()
|
804 |
+
|
805 |
+
shift_length_logits = length_logits[:, :-1, :]
|
806 |
+
shift_new_length_ground_truth = new_length_ground_truth[:, 1:]
|
807 |
+
|
808 |
+
logits_flat = shift_length_logits.reshape(
|
809 |
+
-1,
|
810 |
+
self.chunk_size_limit) # 形状变为 [bs * length, chunk_size_limit]
|
811 |
+
labels_flat = shift_new_length_ground_truth.reshape(
|
812 |
+
-1) # [bs * length]
|
813 |
+
|
814 |
+
# softmax logits to get probability
|
815 |
+
logits_flat = torch.nn.functional.softmax(logits_flat, dim=-1)
|
816 |
+
|
817 |
+
# 修改 loss 为 MSE: 首先根据 logits 加权得到预测长度(注意不是 argmax),之后与 label 计算 MSE
|
818 |
+
|
819 |
+
# pdb.set_trace()
|
820 |
+
# 计算预测长度
|
821 |
+
predicted_lengths = torch.sum(
|
822 |
+
logits_flat * torch.arange(self.chunk_size_limit).to(
|
823 |
+
chunk_hidden_states.device).to(torch.bfloat16),
|
824 |
+
dim=1)
|
825 |
+
# 计算预测长度与真实长度之间的均方误差
|
826 |
+
|
827 |
+
loss1 = torch.mean((predicted_lengths[labels_flat != -100] -
|
828 |
+
labels_flat[labels_flat != -100].float())**2)
|
829 |
+
|
830 |
+
# pdb.set_trace()
|
831 |
+
|
832 |
+
nar_hidden_state = outputs.nar_hidden_state
|
833 |
+
|
834 |
+
############################# 其次,用chunk的hidden recover所有token,跟gt计算loss #############################
|
835 |
+
|
836 |
+
nar_labels = torch.full(
|
837 |
+
(nar_hidden_state.size(0), nar_hidden_state.size(1)),
|
838 |
+
-100).to(nar_hidden_state.device) # bs * length
|
839 |
+
|
840 |
+
nar_labels = self.update_nar_labels(nar_labels, labels, slice_pos,
|
841 |
+
length_ground_truth, input_ids,
|
842 |
+
self.chunk_size_limit)
|
843 |
+
|
844 |
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
845 |
+
slice_indices = slice(-logits_to_keep, None) if isinstance(
|
846 |
+
logits_to_keep, int) else logits_to_keep
|
847 |
+
logits = self.lm_head(
|
848 |
+
nar_hidden_state[:, slice_indices, :]) # 1* seq_len * 50304
|
849 |
+
# logits = logits.float()
|
850 |
+
# pdb.set_trace()
|
851 |
+
# if labels is not None:
|
852 |
+
loss2 = self.loss_function_seminat(logits, nar_labels,
|
853 |
+
self.vocab_size, **loss_kwargs)
|
854 |
+
|
855 |
+
else: # for inference
|
856 |
+
softmaxed = torch.softmax(outputs.length_logits[:, -1, :], dim=-1)
|
857 |
+
length = torch.argmax(softmaxed, dim=-1).item() + 1
|
858 |
+
# pdb.set_trace()
|
859 |
+
|
860 |
+
nat_input_embeddings = torch.zeros(
|
861 |
+
1, self.chunk_size_limit,
|
862 |
+
hidden_size).to(input_ids.device).to(torch.bfloat16)
|
863 |
+
nat_attention_mask = torch.zeros(1, self.chunk_size_limit).to(
|
864 |
+
input_ids.device).to(torch.bfloat16)
|
865 |
+
|
866 |
+
nat_input_embeddings[:, :
|
867 |
+
length, :] = outputs.chunk_hidden_state[:, -1, :].expand(
|
868 |
+
length, -1).to(input_ids.device).to(
|
869 |
+
torch.bfloat16)
|
870 |
+
|
871 |
+
nat_attention_mask[:, :length] = torch.tensor([1] * length).to(
|
872 |
+
input_ids.device).to(torch.bfloat16)
|
873 |
+
|
874 |
+
nar_chunk_position = torch.arange(
|
875 |
+
0, self.chunk_size_limit).unsqueeze(0).to(
|
876 |
+
input_ids.device) # bs * max_chunk_num
|
877 |
+
|
878 |
+
nar_position_embeddings = self.rotary_emb(nat_attention_mask,
|
879 |
+
nar_chunk_position)
|
880 |
+
|
881 |
+
# pdb.set_trace()
|
882 |
+
nar_hidden_states = self.model.decoder(
|
883 |
+
nat_input_embeddings,
|
884 |
+
attention_mask=None,
|
885 |
+
position_embeddings=nar_position_embeddings,
|
886 |
+
output_attentions=output_attentions,
|
887 |
+
use_cache=False,
|
888 |
+
cache_position=None,
|
889 |
+
)
|
890 |
+
|
891 |
+
nar_hidden_states = self.model.norm(nar_hidden_states)
|
892 |
+
# pdb.set_trace()
|
893 |
+
return CausalLMOutputWithPast(
|
894 |
+
loss=(loss1, loss2),
|
895 |
+
logits=nar_hidden_states[:, :length, :],
|
896 |
+
past_key_values=outputs.past_key_values,
|
897 |
+
hidden_states=outputs.hidden_states,
|
898 |
+
attentions=outputs.attentions,
|
899 |
+
)
|
900 |
+
|
901 |
+
############################# loss 计算,分两部分 #############################
|
902 |
+
|
903 |
+
# if not return_dict:
|
904 |
+
# output = (logits, ) + outputs[1:]
|
905 |
+
# if output_router_logits:
|
906 |
+
# output = (aux_loss, ) + output
|
907 |
+
# return (loss, ) + output if loss is not None else output
|
908 |
+
# pdb.set_trace()
|
909 |
+
return CausalLMOutputWithPast(
|
910 |
+
loss=(loss1, loss2),
|
911 |
+
logits=logits,
|
912 |
+
past_key_values=outputs.past_key_values,
|
913 |
+
hidden_states=outputs.hidden_states,
|
914 |
+
attentions=outputs.attentions,
|
915 |
+
)
|
916 |
+
|
917 |
+
def update_nar_labels(self, nar_labels, labels, slice_pos,
|
918 |
+
length_ground_truth, input_ids, chunk_size_limit):
|
919 |
+
bs, length = input_ids.size()
|
920 |
+
chunk = 0
|
921 |
+
for b in range(bs):
|
922 |
+
last_cut = slice_pos[b][0] #第一次切分位置
|
923 |
+
for i in range(1, length):
|
924 |
+
if slice_pos[b, i] != -1:
|
925 |
+
# pdb.set_trace()
|
926 |
+
try:
|
927 |
+
nar_labels[chunk, :length_ground_truth[b, i]] = labels[
|
928 |
+
b, last_cut + 1:slice_pos[b, i] + 1]
|
929 |
+
except:
|
930 |
+
pdb.set_trace()
|
931 |
+
last_cut = slice_pos[b, i]
|
932 |
+
chunk += 1
|
933 |
+
else:
|
934 |
+
break
|
935 |
+
return nar_labels
|
936 |
+
|
937 |
+
def fixed_cross_entropy(self,
|
938 |
+
source,
|
939 |
+
target,
|
940 |
+
num_items_in_batch: int = None,
|
941 |
+
ignore_index: int = -100,
|
942 |
+
**kwargs):
|
943 |
+
reduction = "sum" if num_items_in_batch is not None else "mean"
|
944 |
+
loss = F.cross_entropy(source,
|
945 |
+
target,
|
946 |
+
ignore_index=ignore_index,
|
947 |
+
reduction=reduction)
|
948 |
+
if reduction == "sum":
|
949 |
+
loss = loss / num_items_in_batch
|
950 |
+
return loss
|
951 |
+
|
952 |
+
def loss_function_seminat(self,
|
953 |
+
logits,
|
954 |
+
labels,
|
955 |
+
vocab_size: int,
|
956 |
+
num_items_in_batch: int = None,
|
957 |
+
ignore_index: int = -100,
|
958 |
+
**kwargs):
|
959 |
+
# logits: (B, L, V)
|
960 |
+
# labels: (B, L)
|
961 |
+
|
962 |
+
logits = logits.float()
|
963 |
+
labels = labels.to(logits.device)
|
964 |
+
|
965 |
+
# Flatten the tokens (无 shift)
|
966 |
+
logits = logits.view(-1, vocab_size) # (B*L, V)
|
967 |
+
labels = labels.view(-1) # (B*L)
|
968 |
+
|
969 |
+
# Ensure device alignment
|
970 |
+
labels = labels.to(logits.device)
|
971 |
+
|
972 |
+
# Compute loss
|
973 |
+
loss = self.fixed_cross_entropy(logits, labels, num_items_in_batch,
|
974 |
+
ignore_index, **kwargs)
|
975 |
+
return loss
|
976 |
+
|
977 |
+
def generate(
|
978 |
+
self,
|
979 |
+
inputs: Optional[torch.Tensor] = None,
|
980 |
+
generation_config: Optional[GenerationConfig] = None,
|
981 |
+
logits_processor: Optional[LogitsProcessorList] = None,
|
982 |
+
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
983 |
+
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor],
|
984 |
+
List[int]]] = None,
|
985 |
+
synced_gpus: Optional[bool] = None,
|
986 |
+
assistant_model: Optional["PreTrainedModel"] = None,
|
987 |
+
streamer: Optional["BaseStreamer"] = None,
|
988 |
+
negative_prompt_ids: Optional[torch.Tensor] = None,
|
989 |
+
negative_prompt_attention_mask: Optional[torch.Tensor] = None,
|
990 |
+
**kwargs,
|
991 |
+
) -> Union[GenerateOutput, torch.LongTensor]:
|
992 |
+
|
993 |
+
# 1. Handle `generation_config` and kwargs that might update it, and validate the `.generate()` call
|
994 |
+
self._validate_model_class()
|
995 |
+
tokenizer = kwargs.pop(
|
996 |
+
"tokenizer",
|
997 |
+
None) # Pull this out first, we only use it for stopping criteria
|
998 |
+
assistant_tokenizer = kwargs.pop(
|
999 |
+
"assistant_tokenizer", None) # only used for assisted generation
|
1000 |
+
|
1001 |
+
generation_config, model_kwargs = self._prepare_generation_config(
|
1002 |
+
generation_config, **kwargs)
|
1003 |
+
|
1004 |
+
# GenerationConfig {
|
1005 |
+
# "eos_token_id": 50279,
|
1006 |
+
# "max_length": 2048,
|
1007 |
+
# "pad_token_id": 1
|
1008 |
+
# }
|
1009 |
+
|
1010 |
+
self._validate_model_kwargs(model_kwargs.copy())
|
1011 |
+
self._validate_assistant(assistant_model, tokenizer,
|
1012 |
+
assistant_tokenizer)
|
1013 |
+
|
1014 |
+
# 2. Set generation parameters if not already defined
|
1015 |
+
# 判断是否在多GPU环境下同步生成(如DeepSpeed ZeRO-3或FSDP)
|
1016 |
+
if synced_gpus is None:
|
1017 |
+
synced_gpus = (
|
1018 |
+
is_deepspeed_zero3_enabled()
|
1019 |
+
or is_fsdp_managed_module(self)) and dist.get_world_size() > 1
|
1020 |
+
|
1021 |
+
# 初始化logits处理器和停止条件
|
1022 |
+
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList(
|
1023 |
+
) # 定义对模型输出logits的修改规则(如禁止重复词、强制特定token等)。
|
1024 |
+
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList(
|
1025 |
+
) # 定义生成停止条件(如达到最大长度、检测到终止符等)。
|
1026 |
+
|
1027 |
+
accepts_attention_mask = "attention_mask" in set(
|
1028 |
+
inspect.signature(self.forward).parameters.keys()) # True
|
1029 |
+
requires_attention_mask = "encoder_outputs" not in model_kwargs # True
|
1030 |
+
kwargs_has_attention_mask = model_kwargs.get("attention_mask",
|
1031 |
+
None) is not None # False
|
1032 |
+
|
1033 |
+
# pdb.set_trace()
|
1034 |
+
|
1035 |
+
# 3. Define model inputs
|
1036 |
+
inputs_tensor, model_input_name, model_kwargs = self._prepare_model_inputs(
|
1037 |
+
inputs, generation_config.bos_token_id, model_kwargs)
|
1038 |
+
batch_size = inputs_tensor.shape[0]
|
1039 |
+
|
1040 |
+
# inputs_tensor bs * input_length; model_input_name:"input_ids";
|
1041 |
+
|
1042 |
+
device = inputs_tensor.device
|
1043 |
+
self._prepare_special_tokens(generation_config,
|
1044 |
+
kwargs_has_attention_mask,
|
1045 |
+
device=device)
|
1046 |
+
|
1047 |
+
# decoder-only models must use left-padding for batched generation.
|
1048 |
+
# batch generation用的
|
1049 |
+
if not self.config.is_encoder_decoder and not is_torchdynamo_compiling(
|
1050 |
+
):
|
1051 |
+
# If `input_ids` was given, check if the last id in any sequence is `pad_token_id`
|
1052 |
+
# Note: If using, `inputs_embeds` this check does not work, because we want to be more hands-off.
|
1053 |
+
if (generation_config._pad_token_tensor is not None
|
1054 |
+
and batch_size > 1 and len(inputs_tensor.shape) == 2
|
1055 |
+
and torch.sum(inputs_tensor[:, -1] ==
|
1056 |
+
generation_config._pad_token_tensor) > 0):
|
1057 |
+
logger.warning(
|
1058 |
+
"A decoder-only architecture is being used, but right-padding was detected! For correct "
|
1059 |
+
"generation results, please set `padding_side='left'` when initializing the tokenizer."
|
1060 |
+
)
|
1061 |
+
# pdb.set_trace()
|
1062 |
+
# 4. Define other model kwargs
|
1063 |
+
# decoder-only models with inputs_embeds forwarding must use caching (otherwise we can't detect whether we are
|
1064 |
+
# generating the first new token or not, and we only want to use the embeddings for the first new token)
|
1065 |
+
if not self.config.is_encoder_decoder and model_input_name == "inputs_embeds":
|
1066 |
+
generation_config.use_cache = True
|
1067 |
+
# 生成第一个新token时需要依赖缓存判断是否处于生成阶段,后续token生成依赖缓存加速。
|
1068 |
+
|
1069 |
+
# 生成attention mask
|
1070 |
+
if not kwargs_has_attention_mask and requires_attention_mask and accepts_attention_mask:
|
1071 |
+
model_kwargs[
|
1072 |
+
"attention_mask"] = self._prepare_attention_mask_for_generation(
|
1073 |
+
inputs_tensor, generation_config, model_kwargs)
|
1074 |
+
|
1075 |
+
# 输入了attention,检查一下对不对
|
1076 |
+
elif kwargs_has_attention_mask:
|
1077 |
+
# TODO (joao): generalize this check with other types of inputs
|
1078 |
+
if model_input_name == "input_ids" and len(
|
1079 |
+
model_kwargs["attention_mask"].shape) > 2:
|
1080 |
+
raise ValueError(
|
1081 |
+
"`attention_mask` passed to `generate` must be 2D.")
|
1082 |
+
|
1083 |
+
# encoder-decoder model设定
|
1084 |
+
if self.config.is_encoder_decoder and "encoder_outputs" not in model_kwargs:
|
1085 |
+
# if model is encoder decoder encoder_outputs are created and added to `model_kwargs`
|
1086 |
+
model_kwargs = self._prepare_encoder_decoder_kwargs_for_generation(
|
1087 |
+
inputs_tensor, model_kwargs, model_input_name,
|
1088 |
+
generation_config)
|
1089 |
+
|
1090 |
+
# 5. Prepare `input_ids` which will be used for auto-regressive generation
|
1091 |
+
# encoder-decoder model
|
1092 |
+
if self.config.is_encoder_decoder:
|
1093 |
+
input_ids, model_kwargs = self._prepare_decoder_input_ids_for_generation(
|
1094 |
+
batch_size=batch_size,
|
1095 |
+
model_input_name=model_input_name,
|
1096 |
+
model_kwargs=model_kwargs,
|
1097 |
+
decoder_start_token_id=generation_config.
|
1098 |
+
_decoder_start_token_tensor,
|
1099 |
+
device=inputs_tensor.device,
|
1100 |
+
)
|
1101 |
+
else:
|
1102 |
+
input_ids = inputs_tensor if model_input_name == "input_ids" else model_kwargs.pop(
|
1103 |
+
"input_ids") # torch.Size([1, 25]) # torch.Size([1, 25])
|
1104 |
+
|
1105 |
+
# 修复不完整的token
|
1106 |
+
if generation_config.token_healing:
|
1107 |
+
input_ids = self.heal_tokens(input_ids, tokenizer)
|
1108 |
+
|
1109 |
+
# 流式输出
|
1110 |
+
if streamer is not None:
|
1111 |
+
streamer.put(input_ids.cpu())
|
1112 |
+
|
1113 |
+
# pdb.set_trace()
|
1114 |
+
|
1115 |
+
# 6. Prepare `max_length` depending on other stopping criteria.
|
1116 |
+
input_ids_length = input_ids.shape[-1]
|
1117 |
+
has_default_max_length = kwargs.get(
|
1118 |
+
"max_length") is None and generation_config.max_length is not None
|
1119 |
+
has_default_min_length = kwargs.get(
|
1120 |
+
"min_length") is None and generation_config.min_length is not None
|
1121 |
+
# min_length是0
|
1122 |
+
|
1123 |
+
# 生成的一些config
|
1124 |
+
generation_config = self._prepare_generated_length(
|
1125 |
+
generation_config=generation_config,
|
1126 |
+
has_default_max_length=has_default_max_length,
|
1127 |
+
has_default_min_length=has_default_min_length,
|
1128 |
+
model_input_name=model_input_name, # "input_ids"
|
1129 |
+
inputs_tensor=inputs_tensor,
|
1130 |
+
input_ids_length=input_ids_length, #输入长度
|
1131 |
+
)
|
1132 |
+
|
1133 |
+
# If the model supports `logits_to_keep` in forward(), set it to 1 to avoid computing the whole
|
1134 |
+
# logit matrix. This can save a lot of memory during the first forward pass. Note that assisted decoding
|
1135 |
+
# dynamically overrides this value as it can need more than the last token logits
|
1136 |
+
if self._supports_logits_to_keep(
|
1137 |
+
) and "logits_to_keep" not in model_kwargs:
|
1138 |
+
model_kwargs["logits_to_keep"] = 1
|
1139 |
+
# 模型在计算时仅保留最后一个 token 的 logits,而非整个词汇表的 logits,从而大幅降低内存占用。若使用束搜索宽度为 5,辅助解码会覆盖 logits_to_keep=5,保留多个候选 token 的 logits 以支持多路径探索。
|
1140 |
+
|
1141 |
+
# 检查生成长度
|
1142 |
+
self._validate_generated_length(generation_config, input_ids_length,
|
1143 |
+
has_default_max_length)
|
1144 |
+
|
1145 |
+
# 7. Prepare the cache.
|
1146 |
+
# - `model_kwargs` may be updated in place with a cache as defined by the parameters in `generation_config`.
|
1147 |
+
# - different models have a different cache name expected by the model (default = "past_key_values")
|
1148 |
+
# - `max_length`, prepared above, is used to determine the maximum cache length
|
1149 |
+
max_cache_length = generation_config.max_length - 1 #存最长length-1个token cache
|
1150 |
+
|
1151 |
+
# 如��输入是emb
|
1152 |
+
if (inputs_tensor.shape[1] != input_ids_length
|
1153 |
+
and model_input_name == "inputs_embeds"
|
1154 |
+
and not self.config.is_encoder_decoder):
|
1155 |
+
max_cache_length += inputs_tensor.shape[1]
|
1156 |
+
self._prepare_cache_for_generation(generation_config, model_kwargs,
|
1157 |
+
assistant_model, batch_size,
|
1158 |
+
max_cache_length, device)
|
1159 |
+
|
1160 |
+
# 8. determine generation mode
|
1161 |
+
generation_mode = generation_config.get_generation_mode(
|
1162 |
+
assistant_model) # 辅助解码
|
1163 |
+
|
1164 |
+
if streamer is not None and (generation_config.num_beams > 1):
|
1165 |
+
raise ValueError(
|
1166 |
+
"`streamer` cannot be used with beam search (yet!). Make sure that `num_beams` is set to 1."
|
1167 |
+
)
|
1168 |
+
|
1169 |
+
# device检查
|
1170 |
+
if not is_torchdynamo_compiling(
|
1171 |
+
) and self.device.type != input_ids.device.type:
|
1172 |
+
warnings.warn(
|
1173 |
+
"You are calling .generate() with the `input_ids` being on a device type different"
|
1174 |
+
f" than your model's device. `input_ids` is on {input_ids.device.type}, whereas the model"
|
1175 |
+
f" is on {self.device.type}. You may experience unexpected behaviors or slower generation."
|
1176 |
+
" Please make sure that you have put `input_ids` to the"
|
1177 |
+
f" correct device by calling for example input_ids = input_ids.to('{self.device.type}') before"
|
1178 |
+
" running `.generate()`.",
|
1179 |
+
UserWarning,
|
1180 |
+
)
|
1181 |
+
|
1182 |
+
# pdb.set_trace()
|
1183 |
+
|
1184 |
+
# 9. prepare logits processors and stopping criteria
|
1185 |
+
prepared_logits_processor = self._get_logits_processor(
|
1186 |
+
generation_config=generation_config,
|
1187 |
+
input_ids_seq_length=input_ids_length,
|
1188 |
+
encoder_input_ids=inputs_tensor,
|
1189 |
+
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
|
1190 |
+
logits_processor=logits_processor,
|
1191 |
+
device=inputs_tensor.device,
|
1192 |
+
model_kwargs=model_kwargs,
|
1193 |
+
negative_prompt_ids=negative_prompt_ids,
|
1194 |
+
negative_prompt_attention_mask=negative_prompt_attention_mask,
|
1195 |
+
)
|
1196 |
+
prepared_stopping_criteria = self._get_stopping_criteria(
|
1197 |
+
generation_config=generation_config,
|
1198 |
+
stopping_criteria=stopping_criteria,
|
1199 |
+
tokenizer=tokenizer,
|
1200 |
+
**kwargs)
|
1201 |
+
|
1202 |
+
# Set model_kwargs `use_cache` so we can use it later in forward runs
|
1203 |
+
model_kwargs["use_cache"] = generation_config.use_cache
|
1204 |
+
|
1205 |
+
input_ids, model_kwargs = self._expand_inputs_for_generation(
|
1206 |
+
input_ids=input_ids,
|
1207 |
+
expand_size=generation_config.num_return_sequences, # 1
|
1208 |
+
is_encoder_decoder=self.config.is_encoder_decoder, # false
|
1209 |
+
**model_kwargs,
|
1210 |
+
)
|
1211 |
+
|
1212 |
+
result = self._sampleforseminat(
|
1213 |
+
input_ids,
|
1214 |
+
logits_processor=prepared_logits_processor,
|
1215 |
+
stopping_criteria=prepared_stopping_criteria,
|
1216 |
+
generation_config=generation_config,
|
1217 |
+
synced_gpus=synced_gpus,
|
1218 |
+
streamer=streamer,
|
1219 |
+
**model_kwargs,
|
1220 |
+
)
|
1221 |
+
|
1222 |
+
# Convert to legacy cache format if requested
|
1223 |
+
if (generation_config.return_legacy_cache is True
|
1224 |
+
and not is_torchdynamo_compiling()
|
1225 |
+
and hasattr(result, "past_key_values") and getattr(
|
1226 |
+
result.past_key_values, "to_legacy_cache") is not None):
|
1227 |
+
result.past_key_values = result.past_key_values.to_legacy_cache()
|
1228 |
+
return result
|
1229 |
+
|
1230 |
+
def _sampleforseminat(
|
1231 |
+
self,
|
1232 |
+
input_ids: torch.LongTensor,
|
1233 |
+
logits_processor: LogitsProcessorList,
|
1234 |
+
stopping_criteria: StoppingCriteriaList,
|
1235 |
+
generation_config: GenerationConfig,
|
1236 |
+
synced_gpus: bool,
|
1237 |
+
streamer: Optional["BaseStreamer"],
|
1238 |
+
**model_kwargs,
|
1239 |
+
) -> Union[GenerateNonBeamOutput, torch.LongTensor]:
|
1240 |
+
|
1241 |
+
# init values
|
1242 |
+
pad_token_id = generation_config._pad_token_tensor # 获取填充token的ID
|
1243 |
+
output_attentions = generation_config.output_attentions # 是否输出注意力权重
|
1244 |
+
output_hidden_states = generation_config.output_hidden_states # 是否输出隐藏状态
|
1245 |
+
output_scores = generation_config.output_scores # 是否输出分数
|
1246 |
+
output_logits = generation_config.output_logits # 是否输出原始logits
|
1247 |
+
return_dict_in_generate = generation_config.return_dict_in_generate # 是否返回结构化字典
|
1248 |
+
max_length = generation_config.max_length # 最大生成长度
|
1249 |
+
has_eos_stopping_criteria = any(
|
1250 |
+
hasattr(criteria, "eos_token_id")
|
1251 |
+
for criteria in stopping_criteria) # 检查停止条件是否包含EOS token
|
1252 |
+
do_sample = generation_config.do_sample # 是否使用采样方法
|
1253 |
+
|
1254 |
+
# 初始化结果收集容器
|
1255 |
+
# init attention / hidden states / scores tuples
|
1256 |
+
scores = () if (return_dict_in_generate and output_scores) else None
|
1257 |
+
raw_logits = () if (return_dict_in_generate
|
1258 |
+
and output_logits) else None
|
1259 |
+
decoder_attentions = () if (return_dict_in_generate
|
1260 |
+
and output_attentions) else None
|
1261 |
+
cross_attentions = () if (return_dict_in_generate
|
1262 |
+
and output_attentions) else None
|
1263 |
+
decoder_hidden_states = () if (return_dict_in_generate
|
1264 |
+
and output_hidden_states) else None
|
1265 |
+
|
1266 |
+
# # 编码器-解码器模型特殊处理 不用管
|
1267 |
+
# if model is an encoder-decoder, retrieve encoder attention weights and hidden states
|
1268 |
+
if return_dict_in_generate and self.config.is_encoder_decoder:
|
1269 |
+
encoder_attentions = model_kwargs["encoder_outputs"].get(
|
1270 |
+
"attentions") if output_attentions else None
|
1271 |
+
encoder_hidden_states = (
|
1272 |
+
model_kwargs["encoder_outputs"].get("hidden_states")
|
1273 |
+
if output_hidden_states else None)
|
1274 |
+
|
1275 |
+
# pdb.set_trace()
|
1276 |
+
|
1277 |
+
# 初始化序列跟踪
|
1278 |
+
# keep track of which sequences are already finished
|
1279 |
+
batch_size, cur_len = input_ids.shape
|
1280 |
+
this_peer_finished = False
|
1281 |
+
unfinished_sequences = torch.ones(
|
1282 |
+
batch_size, dtype=torch.long,
|
1283 |
+
device=input_ids.device) # 初始化未完成序列标记 torch.Size([1])
|
1284 |
+
model_kwargs = self._get_initial_cache_position(
|
1285 |
+
input_ids, model_kwargs) # 初始化缓存位置
|
1286 |
+
|
1287 |
+
model_forward = self.__call__ # 获取前向传播函数
|
1288 |
+
############ 换成新的forward
|
1289 |
+
# model_forward = self.forward
|
1290 |
+
|
1291 |
+
if isinstance(model_kwargs.get("past_key_values"), Cache):
|
1292 |
+
is_compileable = model_kwargs[
|
1293 |
+
"past_key_values"].is_compileable and self._supports_static_cache #编译优化
|
1294 |
+
is_compileable = is_compileable and not self.generation_config.disable_compile
|
1295 |
+
if is_compileable and (
|
1296 |
+
self.device.type == "cuda"
|
1297 |
+
or generation_config.compile_config._compile_all_devices):
|
1298 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "0"
|
1299 |
+
model_forward = self.get_compiled_call(
|
1300 |
+
generation_config.compile_config)
|
1301 |
+
|
1302 |
+
############ nar特别加的cache ############
|
1303 |
+
# model_kwargs["nar_kv_cache"] = DynamicCache()
|
1304 |
+
# model_kwargs["slice_pos"] = torch.tensor([[4] + [-1] * (max_length - 1)
|
1305 |
+
# ])
|
1306 |
+
|
1307 |
+
start = 4
|
1308 |
+
s_pos = [start]
|
1309 |
+
while True:
|
1310 |
+
start += 5
|
1311 |
+
if start > input_ids.shape[1] - 1:
|
1312 |
+
s_pos.append(input_ids.shape[1] - 1)
|
1313 |
+
break
|
1314 |
+
else:
|
1315 |
+
s_pos.append(start)
|
1316 |
+
|
1317 |
+
slice_pos = torch.tensor(s_pos + [-1] *
|
1318 |
+
(max_length - len(s_pos))).unsqueeze(0).to(
|
1319 |
+
input_ids.device)
|
1320 |
+
|
1321 |
+
model_kwargs['slice_pos'] = slice_pos
|
1322 |
+
count = (slice_pos != -1).sum().item()
|
1323 |
+
new_cache_position = torch.arange(0, count).to(input_ids.device)
|
1324 |
+
model_kwargs[
|
1325 |
+
'cache_position'] = new_cache_position # 更新一下cache position
|
1326 |
+
|
1327 |
+
############ nar特别加的cache ############
|
1328 |
+
|
1329 |
+
is_prefill = True
|
1330 |
+
while self._has_unfinished_sequences(
|
1331 |
+
this_peer_finished,
|
1332 |
+
synced_gpus,
|
1333 |
+
device=input_ids.device,
|
1334 |
+
cur_len=cur_len,
|
1335 |
+
max_length=max_length): # 循环知道序列生成完
|
1336 |
+
# prepare model inputs
|
1337 |
+
|
1338 |
+
# pdb.set_trace()
|
1339 |
+
|
1340 |
+
# model_kwargs.keys(): dict_keys(['attention_mask', 'logits_to_keep', 'past_key_values', 'use_cache', 'cache_position', 'nar_kv_cache', 'slice_pos'])
|
1341 |
+
model_inputs = self.prepare_inputs_for_generation( #加入position_id和input_id
|
1342 |
+
input_ids, **model_kwargs
|
1343 |
+
) #dict_keys(['cache_position', 'past_key_values', 'input_ids', 'inputs_embeds', 'position_ids', 'attention_mask', 'logits_to_keep', 'use_cache'])
|
1344 |
+
# pdb.set_trace()
|
1345 |
+
|
1346 |
+
# position_ids = torch.arange(
|
1347 |
+
# input_ids.shape[1], device=input_ids.device).unsqueeze(0).to(input_ids.device)
|
1348 |
+
# model_inputs.update({"position_ids": position_ids})
|
1349 |
+
|
1350 |
+
model_inputs.update({"input_ids": input_ids})
|
1351 |
+
|
1352 |
+
# prepare variable output controls (note: some models won't accept all output controls)
|
1353 |
+
model_inputs.update({"output_attentions": output_attentions}
|
1354 |
+
if output_attentions else {})
|
1355 |
+
model_inputs.update({"output_hidden_states": output_hidden_states}
|
1356 |
+
if output_hidden_states else {})
|
1357 |
+
|
1358 |
+
if is_prefill:
|
1359 |
+
# pdb.set_trace()
|
1360 |
+
# outputs = self(**model_inputs, return_dict=True)
|
1361 |
+
# dict_keys(['cache_position', 'past_key_values', 'input_ids', 'inputs_embeds', 'position_ids', 'attention_mask', 'logits_to_keep', 'use_cache'])
|
1362 |
+
outputs = self.forward(**model_inputs, return_dict=True)
|
1363 |
+
is_prefill = False
|
1364 |
+
else:
|
1365 |
+
# pdb.set_trace()
|
1366 |
+
outputs = model_forward(**model_inputs, return_dict=True)
|
1367 |
+
|
1368 |
+
# pdb.set_trace()
|
1369 |
+
|
1370 |
+
################ seminat ###########################
|
1371 |
+
# model_kwargs['slice_pos'] = outputs.slice_pos
|
1372 |
+
################ seminat ###########################
|
1373 |
+
|
1374 |
+
# synced_gpus: don't waste resources running the code we don't need; kwargs must be updated before skipping
|
1375 |
+
model_kwargs = self._update_model_kwargs_for_generation_for_seminat(
|
1376 |
+
outputs,
|
1377 |
+
model_kwargs,
|
1378 |
+
is_encoder_decoder=self.config.is_encoder_decoder,
|
1379 |
+
num_new_tokens=outputs.logits.size(1))
|
1380 |
+
if synced_gpus and this_peer_finished:
|
1381 |
+
continue
|
1382 |
+
|
1383 |
+
# pdb.set_trace()
|
1384 |
+
# Clone is needed to avoid keeping a hanging ref to outputs.logits which may be very large for first iteration
|
1385 |
+
# (the clone itself is always small)
|
1386 |
+
|
1387 |
+
# next_token_logits = outputs.logits[:, -1, :].clone().float()
|
1388 |
+
next_token_logits = outputs.logits[:, :, :].clone().float(
|
1389 |
+
) # 新生成了k个token
|
1390 |
+
|
1391 |
+
next_token_logits = next_token_logits.to(input_ids.device)
|
1392 |
+
|
1393 |
+
# pre-process distribution
|
1394 |
+
next_token_scores = logits_processor(input_ids, next_token_logits)
|
1395 |
+
|
1396 |
+
# token selection
|
1397 |
+
if do_sample:
|
1398 |
+
probs = nn.functional.softmax(next_token_scores, dim=-1)
|
1399 |
+
# TODO (joao): this OP throws "skipping cudagraphs due to ['incompatible ops']", find solution
|
1400 |
+
next_tokens = torch.multinomial(probs,
|
1401 |
+
num_samples=1).squeeze(1)
|
1402 |
+
else:
|
1403 |
+
next_tokens = torch.argmax(
|
1404 |
+
next_token_scores,
|
1405 |
+
dim=-1) # tensor([9281], device='cuda:0') token id
|
1406 |
+
|
1407 |
+
# pdb.set_trace()
|
1408 |
+
# 更新slice_pos
|
1409 |
+
count = (model_kwargs['slice_pos'] != -1).sum().item()
|
1410 |
+
model_kwargs['slice_pos'][:,count] = model_kwargs['slice_pos'][:,
|
1411 |
+
count - 1] + outputs.logits.size(1)
|
1412 |
+
|
1413 |
+
# pdb.set_trace()
|
1414 |
+
|
1415 |
+
|
1416 |
+
# finished sentences should have their next token be a padding token
|
1417 |
+
if has_eos_stopping_criteria:
|
1418 |
+
next_tokens = next_tokens * unfinished_sequences + pad_token_id * (
|
1419 |
+
1 - unfinished_sequences
|
1420 |
+
) # 序列生成完的时候,unfinished_sequences为0,正好后面全填上padding
|
1421 |
+
|
1422 |
+
# pdb.set_trace()
|
1423 |
+
# update generated ids, model inputs, and length for next step
|
1424 |
+
# input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
|
1425 |
+
input_ids = torch.cat([input_ids, next_tokens], dim=-1)
|
1426 |
+
if streamer is not None:
|
1427 |
+
streamer.put(next_tokens.cpu())
|
1428 |
+
|
1429 |
+
# 更新完成状态
|
1430 |
+
unfinished_sequences = unfinished_sequences & ~stopping_criteria(
|
1431 |
+
input_ids, scores)
|
1432 |
+
this_peer_finished = unfinished_sequences.max() == 0
|
1433 |
+
cur_len += outputs.logits.size(1) # 长度 +1
|
1434 |
+
|
1435 |
+
# This is needed to properly delete outputs.logits which may be very large for first iteration
|
1436 |
+
# Otherwise a reference to outputs is kept which keeps the logits alive in the next iteration
|
1437 |
+
del outputs
|
1438 |
+
|
1439 |
+
if streamer is not None:
|
1440 |
+
streamer.end()
|
1441 |
+
|
1442 |
+
if return_dict_in_generate:
|
1443 |
+
if self.config.is_encoder_decoder:
|
1444 |
+
return GenerateEncoderDecoderOutput(
|
1445 |
+
sequences=input_ids,
|
1446 |
+
scores=scores,
|
1447 |
+
logits=raw_logits,
|
1448 |
+
encoder_attentions=encoder_attentions,
|
1449 |
+
encoder_hidden_states=encoder_hidden_states,
|
1450 |
+
decoder_attentions=decoder_attentions,
|
1451 |
+
cross_attentions=cross_attentions,
|
1452 |
+
decoder_hidden_states=decoder_hidden_states,
|
1453 |
+
past_key_values=model_kwargs.get("past_key_values"),
|
1454 |
+
)
|
1455 |
+
else:
|
1456 |
+
return GenerateDecoderOnlyOutput(
|
1457 |
+
sequences=input_ids,
|
1458 |
+
scores=scores,
|
1459 |
+
logits=raw_logits,
|
1460 |
+
attentions=decoder_attentions,
|
1461 |
+
hidden_states=decoder_hidden_states,
|
1462 |
+
past_key_values=model_kwargs.get("past_key_values"),
|
1463 |
+
)
|
1464 |
+
else:
|
1465 |
+
return input_ids
|
1466 |
+
|
1467 |
+
def _update_model_kwargs_for_generation_for_seminat(
|
1468 |
+
self,
|
1469 |
+
outputs: ModelOutput,
|
1470 |
+
model_kwargs: Dict[str, Any],
|
1471 |
+
is_encoder_decoder: bool = False,
|
1472 |
+
num_new_tokens: int = 1,
|
1473 |
+
) -> Dict[str, Any]:
|
1474 |
+
ALL_CACHE_NAMES = [
|
1475 |
+
"past_key_values", # default
|
1476 |
+
"cache_params", # mamba-based models
|
1477 |
+
"state", # rwkv
|
1478 |
+
"mems", # xlnet
|
1479 |
+
"past_buckets_states", # reformer
|
1480 |
+
]
|
1481 |
+
# update past_key_values keeping its naming used in model code
|
1482 |
+
for possible_cache_name in ALL_CACHE_NAMES:
|
1483 |
+
if possible_cache_name in outputs:
|
1484 |
+
# TODO (joao): remove output/input mismatch when these old models (xlnet, reformer) are deprecated
|
1485 |
+
if possible_cache_name in ("past_buckets_states", "mems"):
|
1486 |
+
cache_name = "past_key_values"
|
1487 |
+
else:
|
1488 |
+
cache_name = possible_cache_name
|
1489 |
+
model_kwargs[cache_name] = getattr(outputs,
|
1490 |
+
possible_cache_name)
|
1491 |
+
break
|
1492 |
+
|
1493 |
+
# pdb.set_trace()
|
1494 |
+
|
1495 |
+
# update token_type_ids with last value
|
1496 |
+
# false
|
1497 |
+
if "token_type_ids" in model_kwargs:
|
1498 |
+
token_type_ids = model_kwargs["token_type_ids"]
|
1499 |
+
model_kwargs["token_type_ids"] = torch.cat(
|
1500 |
+
[token_type_ids, token_type_ids[:, -1].unsqueeze(-1)], dim=-1)
|
1501 |
+
|
1502 |
+
if not is_encoder_decoder:
|
1503 |
+
# update attention mask
|
1504 |
+
# 重点看这个
|
1505 |
+
# pdb.set_trace()
|
1506 |
+
if "attention_mask" in model_kwargs:
|
1507 |
+
attention_mask = model_kwargs["attention_mask"]
|
1508 |
+
model_kwargs["attention_mask"] = torch.cat(
|
1509 |
+
[
|
1510 |
+
attention_mask,
|
1511 |
+
attention_mask.new_ones(
|
1512 |
+
(attention_mask.shape[0], num_new_tokens
|
1513 |
+
)) # 1 -> num_new_tokens 一次加多个token的attention
|
1514 |
+
],
|
1515 |
+
dim=-1)
|
1516 |
+
else:
|
1517 |
+
# update decoder attention mask
|
1518 |
+
if "decoder_attention_mask" in model_kwargs:
|
1519 |
+
decoder_attention_mask = model_kwargs["decoder_attention_mask"]
|
1520 |
+
model_kwargs["decoder_attention_mask"] = torch.cat(
|
1521 |
+
[
|
1522 |
+
decoder_attention_mask,
|
1523 |
+
decoder_attention_mask.new_ones(
|
1524 |
+
(decoder_attention_mask.shape[0], 1))
|
1525 |
+
],
|
1526 |
+
dim=-1,
|
1527 |
+
)
|
1528 |
+
|
1529 |
+
# pdb.set_trace()
|
1530 |
+
if model_kwargs.get("use_cache", True):
|
1531 |
+
# model_kwargs["cache_position"] = model_kwargs["cache_position"][-1:] + num_new_tokens
|
1532 |
+
model_kwargs["cache_position"] = torch.tensor([
|
1533 |
+
model_kwargs["cache_position"][-1:].item() + 1
|
1534 |
+
]).to(model_kwargs["cache_position"].device)
|
1535 |
+
else:
|
1536 |
+
past_positions = model_kwargs.pop("cache_position")
|
1537 |
+
new_positions = torch.arange(
|
1538 |
+
past_positions[-1] + 1,
|
1539 |
+
past_positions[-1] + num_new_tokens + 1,
|
1540 |
+
dtype=past_positions.dtype).to(past_positions.device)
|
1541 |
+
model_kwargs["cache_position"] = torch.cat(
|
1542 |
+
(past_positions, new_positions))
|
1543 |
+
return model_kwargs
|