Danbooru-char-2021 / BCN__readme_EN.txt
Shio-Koube's picture
Add files using upload-large-folder tool
ab5abcb verified
raw
history blame contribute delete
5.35 kB
BOORU CHARS dataset can be used for:
- NN training for tag detection (as Deep Danbooru and better) and/or object detection
- scene scale and composition classification based on key objects (e.g. face) detected
I used notAI-tech NudeNet detector (github.com/notAI-tech/NudeNet)
# rewrote logging and painting of detected objects
def censor(self, img_path, out_path ):
image = cv2.imread(img_path)
ih, iw, _ = image.shape
boxes = self.detect(img_path)
i = 0
for box in boxes:
if 'FACE' in box['label'] : colr=(0, 255, 0)
if 'EXPOSED' in box['label'] : colr=(0, 0, 255)
if 'COVERED' in box['label'] : colr=(255, 0, 0)
lnw = int(min(ih, iw)/48*(box['score']-0.3))
print(img_path+';'+box['label']+';'+str(round(box['score'],2))+';'+str(box['box'][0])+';'\
+str(box['box'][1])+';'+str(box['box'][2]-box['box'][0])+';'+str(box['box'][3]-box['box'][1]),flush = True)
if 'FACE' in box['label'] :
x = box['box'][0]
y = box['box'][1]
w = box['box'][2] - box['box'][0]
h = box['box'][3] - box['box'][1]
crop_img = image[max(0,int(y-0.6*h)): int(y+1.1*h), max(0,int(x-0.35*w)): min(iw,int(x+1.35*w))]
i = 1
image = cv2.rectangle(
image, (box['box'][0], box['box'][1]), (box['box'][2], box['box'][3]), colr, max(lnw, 4)
)
cv2.putText(image, box['label'] + ' ' + str(round(box['score'],2)),
(box['box'][0], box['box'][1]-int(ih*0.005)), cv2.FONT_HERSHEY_SIMPLEX,
ih*0.0004,
(0,0,0), 2, 2)
cv2.imwrite(out_path, image)
# main loop
if __name__ == "__main__":
m = Detector()
for fname in os.listdir(sys.argv[1]):
m.censor(sys.argv[1]+fname,sys.argv[2]+fname )
With volumes 2020-3x4 and 2020-1x2 processed I got 200.887 detections listed in BCN_detect.tsv
FNAME; class OBJ; probability PROB coordinates X;Y;W;H
and also copies of sample pictures with objects shown.
Then I used DB (PL/SQL stored proc) for
- Non Maximum Suppression
- assembling algorithm (in polar coordinates), started from FACE which
* find ARMPITS & BREASTS (with suitable size and position)
* then BELLY (using all findings above)
* then GENITALIA & ANUS (again using findings available)
* and then FEETS (most trucky because of distance and possible vector change)
All findings associated with faces listed in BCN_lineup.tsv (78.184 rows) where:
'FNAME' - file name
'FACE_ID' - face hash inside file
'PROB','X','Y','W','H' - face parameters
'OBJ' - assembled object type simplified ('BRST','ARMP','BELL' etc)
'OPROB','OX','OY','OW','OH' - object parameters
Using listing I can recolor related object and join it center-to-center using code
# PYTHON
import cv2
import pandas as pd
prev_fname = 'NONE'
prev_oname = 'NONE'
prev_hashid = 0
data = pd.read_csv('in.lst',sep=';', decimal=',',index_col='IDX')
#"IDX";"FNAME";"HASHID";"PROB";"X";"Y";"W";"H";"OBJ";"OPROB";"OX";"OY";"OW";"OH";"ONAME"
for i, row in data.iterrows():
print(str(i)+' '+row['FNAME'])
if row['FNAME']!=prev_fname:
image = cv2.imread(row['FNAME'])
ih, iw, _ = image.shape
print(str(i) + ' RD ' + row['FNAME'])
if row['ONAME']!=prev_oname and prev_oname!='NONE':
cv2.imwrite(prev_oname, prev_image)
print(str(i)+' WR '+prev_oname)
prev_oname=row['ONAME']
prev_fname=row['FNAME']
prev_image = image
lnw = int(min(ih, iw) / 48 * (row['PROB'] - 0.3))
prev_image = cv2.rectangle( prev_image, (row['X'], row['Y']),\
(row['X']+row['W'], row['Y']+row['H']), (255,255,255), max(lnw, 4) )
lnwr = int(min(ih, iw) / 48 * (row['OPROB'] - 0.3))
if row['OBJ']=='BRST':
colr = (255, 153, 0) # light blue
lnw = int(lnwr*0.66)
if row['OBJ'] in ('BELL','XXXX'):
colr = (0, 153, 255) # orange
lnw = int(lnwr*0.66)
if row['OBJ']=='ARMP':
colr = (153,0,153) # violet
lnw = int(lnwr*0.33)
if row['OBJ']=='FEET':
colr = (51, 153, 102) # green
lnw = int(lnwr*0.33)
prev_image = cv2.line( prev_image, (int(row['X']+row['W']/2), int(row['Y']+row['H']/2)),\
(int(row['OX']+row['OW']/2), int(row['OY']+row['OH']/2)),colr, max(lnw, 4) )
prev_image = cv2.rectangle( prev_image, (row['OX'], row['OY']),\
(row['OX']+row['OW'], row['OY']+row['OH']), colr, max(lnwr, 4) )
cv2.imwrite(prev_oname, prev_image)
print(str(i) + ' WR ' + prev_oname)
You can find ~4000 selected examples in archives 2020-1x2_O.zip and 2020-3x4_O.zip with:
- 5 or more relations (good complex detection scenarios)
- some EXPOSED objects with high probabilities (possible fails in manual cleanup)
Much more examples omitted because on release size.
Much more efforts has to be done for NudeNet (better detection) and for me (better assembling).
Initial task "scene scale and composition classification" will require
- much more (100.000+ ?) good complex detections
- data mining (attribute importance, clustering) with Oracle DBMS_DATA_MINING or python equivalent