--- dataset_info: features: - name: id dtype: string - name: chapter dtype: string - name: section dtype: string - name: title dtype: string - name: source_file dtype: string - name: question_markdown dtype: string - name: answer_markdown dtype: string - name: code_blocks list: - name: lang dtype: string - name: code dtype: string - name: has_images dtype: bool - name: image_refs list: string splits: - name: train num_bytes: 1282175 num_examples: 1016 download_size: 609478 dataset_size: 1282175 configs: - config_name: default data_files: - split: train path: data/train-* --- # CLRS Solutions QA **Short description.** A compact Q&A dataset distilled from the community-maintained **CLRS solutions** project. Each row contains: - the exercise **question** (markdown), - the **answer** (markdown), - book **chapter/section** metadata, - optional **code blocks** (language-tagged), - optional **image references** (relative paths from the source repo). This set is useful for building retrieval, RAG, tutoring, and evaluation pipelines for classic algorithms & data structures topics. > ⚠️ **Attribution:** This dataset is **derived** from the open-source repository **[walkccc/CLRS](https://github.com/walkccc/CLRS)** (MIT license). Credit belongs to **@walkccc** and all contributors. This packaging only restructures their content into a machine-friendly format. --- ## Contents & Stats - **Split(s):** `train` - **Rows:** ~1,016 - **Source:** Parsed from markdown files in `walkccc/CLRS` (third-edition exercises/solutions) > Note: A small number of rows reference images present in the original repo (`docs/img/...`). This dataset includes the image *references* (paths) as metadata; actual image files are not bundled here. --- **Also available (human-readable copies):** ```python # JSONL ds_json = load_dataset( "json", data_files="hf://datasets/Siddharth899/clrs-qa/data/train.jsonl.gz", token=True, # needed if the repo is private ) # CSV ds_csv = load_dataset( "csv", data_files="hf://datasets/Siddharth899/clrs-qa/data/train.csv.gz", token=True, ) ``` ## Data Fields | Field | Type | Description | | ------------------- | -------------------------------- | --------------------------------------------------------------------- | | `id` | `string` | Stable row id composed from chapter/section/title (e.g., `02-2.3-5`). | | `chapter` | `string` | Chapter number as a zero-padded string (e.g., `"02"`). | | `section` | `string` | Section identifier as in the source (e.g., `"2.3"` or `"2-1"`). | | `title` | `string` | Exercise/problem label (e.g., `"2.3-5"` or `"2-1"`). | | `source_file` | `string` | Original markdown relative path in the source repo. | | `question_markdown` | `string` | Exercise prompt in markdown. | | `answer_markdown` | `string` | Solution/answer in markdown (often includes LaTeX). | | `code_blocks` | `list` of objects `{lang, code}` | Zero or more language-tagged code snippets extracted from the answer. | | `has_images` | `bool` | Whether this item references images. | | `image_refs` | `list[string]` | Relative paths to referenced images in the original repo. | Example `code_blocks` entry: ```json [ {"lang": "cpp", "code": "INSERTION-SORT(A)\n ..."}, {"lang": "python", "code": "def merge(...):\n ..."} ] ``` --- ## Data Construction * **Source:** [`walkccc/CLRS`](https://github.com/walkccc/CLRS) * **License upstream:** MIT * **Method:** A small script parses chapter/section markdown files, extracts headings, prompts, answers, fenced code blocks, and image references, and emits JSONL → uploaded to the Hub (Parquet auto-materialized). * **Known quirks:** * Some answers are brief/telegraphic (mirroring the original). * Image references point to paths in the upstream repo; not all images are bundled here. * Math is plain markdown with LaTeX snippets (`$...$`, `$$...$$`); rendering depends on your viewer. --- ## License * **This dataset (packaging)**: MIT * **Upstream content**: MIT (from `walkccc/CLRS`) You must preserve the original MIT license notice and attribute **@walkccc** and contributors when using this dataset. ``` MIT License Copyright (c) walkccc ... (see upstream repository for the full license text) ``` Additionally, include attribution similar to: > “Portions of the content are derived from walkccc/CLRS (MIT). © The respective contributors.” --- ## Citation If you use this dataset, please cite both the dataset and the upstream project: **Dataset (this repo):** ``` @misc{clrs_qa_dataset_2025, title = {CLRS Solutions QA (walkccc-derived)}, author = {Siddharth899}, year = {2025}, howpublished = {\url{https://huggingface.co/datasets/Siddharth899/clrs-qa}}, note = {Derived from walkccc/CLRS (MIT)} } ``` **Upstream CLRS solutions:** ``` @misc{walkccc_clrs, title = {Solutions to Introduction to Algorithms (Third Edition)}, author = {walkccc and contributors}, howpublished = {\url{https://github.com/walkccc/CLRS}}, license = {MIT} } ``` ## Contact & Maintenance * **Maintainer of this dataset packaging:** @Siddharth899 * Issues / requests: open an issue on the HF dataset repo.