Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
size_categories:
|
3 |
+
- 1M<n<10M
|
4 |
+
---
|
5 |
+
|
6 |
+
E621 TFRecords to train classifiers and other stuff with my codebases.
|
7 |
+
|
8 |
+
TFRecord serialization/deserialization code:
|
9 |
+
|
10 |
+
```python
|
11 |
+
NUM_CLASSES = 8783
|
12 |
+
|
13 |
+
|
14 |
+
# Function to convert value to bytes_list
|
15 |
+
def _bytes_feature(value):
|
16 |
+
if isinstance(value, type(tf.constant(0))):
|
17 |
+
value = value.numpy()
|
18 |
+
elif isinstance(value, str):
|
19 |
+
value = value.encode()
|
20 |
+
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
|
21 |
+
|
22 |
+
|
23 |
+
# Function to convert bool/enum/int/uint to int64_list
|
24 |
+
def _int64_feature(value):
|
25 |
+
int64_list = tf.train.Int64List(value=tf.reshape(value, (-1,)))
|
26 |
+
return tf.train.Feature(int64_list=int64_list)
|
27 |
+
|
28 |
+
|
29 |
+
# Function to create a tf.train.Example message
|
30 |
+
def serialize_example(image_id, image_bytes, label_indexes, tag_string):
|
31 |
+
feature = {
|
32 |
+
"image_id": _int64_feature(image_id),
|
33 |
+
"image_bytes": _bytes_feature(image_bytes),
|
34 |
+
"label_indexes": _int64_feature(label_indexes),
|
35 |
+
"tag_string": _bytes_feature(tag_string),
|
36 |
+
}
|
37 |
+
example_proto = tf.train.Example(features=tf.train.Features(feature=feature))
|
38 |
+
return example_proto.SerializeToString()
|
39 |
+
|
40 |
+
|
41 |
+
# Function to deserialize a single tf.train.Example message
|
42 |
+
def deserialize_example(example_proto):
|
43 |
+
feature_description = {
|
44 |
+
"image_id": tf.io.FixedLenFeature([], tf.int64),
|
45 |
+
"image_bytes": tf.io.FixedLenFeature([], tf.string),
|
46 |
+
"label_indexes": tf.io.VarLenFeature(tf.int64),
|
47 |
+
"tag_string": tf.io.FixedLenFeature([], tf.string),
|
48 |
+
}
|
49 |
+
|
50 |
+
# Parse the input 'tf.train.Example' proto using the dictionary above.
|
51 |
+
parsed_example = tf.io.parse_single_example(example_proto, feature_description)
|
52 |
+
image_tensor = tf.io.decode_jpeg(parsed_example["image_bytes"], channels=3)
|
53 |
+
|
54 |
+
# We only stored label indexes in the TFRecords to save space
|
55 |
+
# Emulate MultiLabelBinarizer to get a tensor of 0s and 1s
|
56 |
+
label_indexes = tf.sparse.to_dense(
|
57 |
+
parsed_example["label_indexes"],
|
58 |
+
default_value=0,
|
59 |
+
)
|
60 |
+
one_hots = tf.one_hot(label_indexes, NUM_CLASSES)
|
61 |
+
labels = tf.reduce_max(one_hots, axis=0)
|
62 |
+
labels = tf.cast(labels, tf.float32)
|
63 |
+
|
64 |
+
sample = {
|
65 |
+
"image_ids": parsed_example["image_id"],
|
66 |
+
"images": image_tensor,
|
67 |
+
"labels": labels,
|
68 |
+
"tags": parsed_example["tag_string"],
|
69 |
+
}
|
70 |
+
return sample
|
71 |
+
```
|