Datasets:
File size: 5,000 Bytes
1b0de99 87b92ed 1b0de99 28dd1ed bdd1b06 28dd1ed 1b0de99 87b92ed 1b0de99 87b92ed 1b0de99 87b92ed 1b0de99 28dd1ed 1b0de99 a6fcae0 bdd1b06 1b0de99 90ed591 180ee2a 28a8c7e f8481a5 180ee2a 8d63c6a e067617 8d63c6a 1d29c76 8d63c6a 180ee2a f8481a5 180ee2a cda0d87 90ed591 f6602ef 90ed591 ee1bf61 afa695b ee1bf61 afa695b ee1bf61 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
---
license: cc-by-sa-4.0
size_categories:
- 1M<n<10M
dataset_info:
- config_name: default
features:
- name: image
dtype: image
- name: image_crop
dtype: image
- name: dr8_id
dtype: string
- name: galaxy_size
dtype: int64
splits:
- name: test
num_bytes: 12057249781.25
num_examples: 86471
- name: validation
num_bytes: 12065699086.25
num_examples: 86499
- name: train
num_bytes: 1181934533243.5
num_examples: 8474566
download_size: 1206114375284
dataset_size: 1206057482111
- config_name: v1.0
features:
- name: image
dtype: image
- name: dr8_id
dtype: string
splits:
- name: train
num_bytes: 959387460144.3469
num_examples: 8474566
- name: test
num_bytes: 9785671701.822557
num_examples: 86471
- name: validation
num_bytes: 9798204502.80013
num_examples: 86499
download_size: 982501453040
dataset_size: 978971336348.9696
configs:
- config_name: default
data_files:
- split: test
path: with_crops/test-*
- split: validation
path: with_crops/validation-*
- split: train
path: with_crops/train-*
- config_name: v1.0
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
- split: validation
path: data/validation-*
tags:
- astronomy
- huggingscience
- science
---
# Galaxies for training astroPT
Here we have ~8.5 million galaxy cutouts from the [DESI legacy survey DR8](https://www.legacysurvey.org/dr8/description/).
The cut outs are 512x512 pixel jpg images centred on the galaxy source.
I've split away 1% of the images into a test set, and 1% into a validation set.
The remaining 98% of the images comprise the training set.
## Metadata (galaxy properties)
There is also accompanying metadata!
To combine the metadata with the galaxy images you can do (for example):
```python
from datasets import load_dataset, concatenate_datasets
# Load the `galaxies' dataset with metadata
galaxies = load_dataset("Smith42/galaxies", streaming=True)
metadata = load_dataset("Smith42/galaxies_metadata", streaming=True).remove_columns("dr8_id")
combined = concatenate_datasets([galaxies['train'], metadata['train']], axis=1)
```
Or you can use v2.0 of this dataset to get the metadata direct with no faffing 🤯:
```python
galaxies = load_dataset("Smith42/galaxies", revision="v2.0", streaming=True)
```
The metadata is also available in parquet format in the root dir of this repo.
You can link the metadata with the galaxies via their dr8_id.
## Embeddings from the pre-trained family of AstroPTv2 models
Same story with pre-generated embeddings from [AstroPTv2](https://huggingface.co/smith42/astropt_v2.0).
You can combine the embeddings with galaxy imagery and metadata by doing:
```python
galaxies = load_dataset("Smith42/galaxies", revision="v2.0", streaming=True)
embs = load_dataset("Smith42/galaxies_embeddings", streaming=True)
combined = concatenate_datasets([galaxies['train'], embs['train']], axis=1)
```
## Useful links
Paper here: [https://arxiv.org/abs/2405.14930](https://arxiv.org/abs/2405.14930)
Models here: [https://huggingface.co/Smith42/astroPT](https://huggingface.co/Smith42/astroPT)
And here: [https://huggingface.co/Smith42/astroPT_v2.0](https://huggingface.co/Smith42/astroPT_v2.0)
Code here: [https://github.com/smith42/astroPT](https://github.com/smith42/astroPT)
Upstream catalogue is [on Zenodo](https://zenodo.org/records/8360385) and paper describing the catalogue is available as [Walmsley+2023](https://doi.org/10.1093/mnras/stad2919).
If you find this dataset useful please consider citing the sources below 🚀🚀:
```
@article{ref_dey2019,
author = {Dey, A. and Schlegel, D. J. and Lang, D. and Blum, R. and Burleigh, K. and Fan, X. and Findlay, J. R. and Finkbeiner, D. and Herrera, D. and Juneau, S. and others},
title = {{Overview of the DESI Legacy Imaging Surveys}},
journal = {Astronomical Journal},
volume = {157},
number = {5},
pages = {168},
year = {2019},
issn = {1538-3881},
publisher = {The American Astronomical Society},
doi = {10.3847/1538-3881/ab089d}
}
```
```
@article{ref_walmsley2023,
author = {Walmsley, M. and G{\ifmmode\acute{e}\else\'{e}\fi}ron, T. and Kruk, S. and Scaife, A. M. M. and Lintott, C. and Masters, K. L. and Dawson, J. M. and Dickinson, H. and Fortson, L. and Garland, I. L. and others},
title = {{Galaxy Zoo DESI: Detailed morphology measurements for 8.7M galaxies in the DESI Legacy Imaging Surveys}},
journal = {Monthly Notices of the Royal Astronomical Society},
volume = {526},
number = {3},
pages = {4768--4786},
year = {2023},
issn = {0035-8711},
publisher = {Oxford Academic},
doi = {10.1093/mnras/stad2919}
}
```
```
@article{ref_smith2024,
author = {Smith, M. J. and Roberts, R. J. and Angeloudi, E. and Huertas-Company, M.},
title = {{AstroPT: Scaling Large Observation Models for Astronomy}},
journal = {ArXiv e-prints},
year = {2024},
eprint = {2405.14930},
doi = {10.48550/arXiv.2405.14930}
}
``` |