File size: 5,000 Bytes
1b0de99
87b92ed
 
 
1b0de99
28dd1ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdd1b06
28dd1ed
1b0de99
 
 
 
 
 
 
87b92ed
 
1b0de99
87b92ed
 
1b0de99
87b92ed
 
 
 
1b0de99
 
28dd1ed
 
 
 
 
 
 
 
1b0de99
 
 
 
 
 
 
a6fcae0
 
bdd1b06
 
1b0de99
90ed591
 
180ee2a
 
 
28a8c7e
 
 
f8481a5
 
180ee2a
8d63c6a
 
 
 
 
 
e067617
 
8d63c6a
1d29c76
 
 
 
8d63c6a
180ee2a
 
f8481a5
 
 
 
 
 
 
 
 
 
 
180ee2a
 
cda0d87
 
90ed591
 
f6602ef
 
90ed591
 
ee1bf61
 
afa695b
ee1bf61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afa695b
 
 
 
 
 
 
 
 
 
 
ee1bf61
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
---
license: cc-by-sa-4.0
size_categories:
- 1M<n<10M
dataset_info:
- config_name: default
  features:
  - name: image
    dtype: image
  - name: image_crop
    dtype: image
  - name: dr8_id
    dtype: string
  - name: galaxy_size
    dtype: int64
  splits:
  - name: test
    num_bytes: 12057249781.25
    num_examples: 86471
  - name: validation
    num_bytes: 12065699086.25
    num_examples: 86499
  - name: train
    num_bytes: 1181934533243.5
    num_examples: 8474566
  download_size: 1206114375284
  dataset_size: 1206057482111
- config_name: v1.0
  features:
  - name: image
    dtype: image
  - name: dr8_id
    dtype: string
  splits:
  - name: train
    num_bytes: 959387460144.3469
    num_examples: 8474566
  - name: test
    num_bytes: 9785671701.822557
    num_examples: 86471
  - name: validation
    num_bytes: 9798204502.80013
    num_examples: 86499
  download_size: 982501453040
  dataset_size: 978971336348.9696
configs:
- config_name: default
  data_files:
  - split: test
    path: with_crops/test-*
  - split: validation
    path: with_crops/validation-*
  - split: train
    path: with_crops/train-*
- config_name: v1.0
  data_files:
  - split: train
    path: data/train-*
  - split: test
    path: data/test-*
  - split: validation
    path: data/validation-*
tags:
- astronomy
- huggingscience
- science
---
# Galaxies for training astroPT

Here we have ~8.5 million galaxy cutouts from the [DESI legacy survey DR8](https://www.legacysurvey.org/dr8/description/).
The cut outs are 512x512 pixel jpg images centred on the galaxy source.

I've split away 1% of the images into a test set, and 1% into a validation set.
The remaining 98% of the images comprise the training set.

## Metadata (galaxy properties)

There is also accompanying metadata!
To combine the metadata with the galaxy images you can do (for example):
```python
from datasets import load_dataset, concatenate_datasets

# Load the `galaxies' dataset with metadata
galaxies = load_dataset("Smith42/galaxies", streaming=True)
metadata = load_dataset("Smith42/galaxies_metadata", streaming=True).remove_columns("dr8_id")
combined = concatenate_datasets([galaxies['train'], metadata['train']], axis=1)
```
Or you can use v2.0 of this dataset to get the metadata direct with no faffing 🤯:
```python
galaxies = load_dataset("Smith42/galaxies", revision="v2.0", streaming=True)
```
The metadata is also available in parquet format in the root dir of this repo. 
You can link the metadata with the galaxies via their dr8_id.

## Embeddings from the pre-trained family of AstroPTv2 models

Same story with pre-generated embeddings from [AstroPTv2](https://huggingface.co/smith42/astropt_v2.0).

You can combine the embeddings with galaxy imagery and metadata by doing:
```python
galaxies = load_dataset("Smith42/galaxies", revision="v2.0", streaming=True)
embs = load_dataset("Smith42/galaxies_embeddings", streaming=True)
combined = concatenate_datasets([galaxies['train'], embs['train']], axis=1)
```

## Useful links

Paper here: [https://arxiv.org/abs/2405.14930](https://arxiv.org/abs/2405.14930)

Models here: [https://huggingface.co/Smith42/astroPT](https://huggingface.co/Smith42/astroPT)

And here: [https://huggingface.co/Smith42/astroPT_v2.0](https://huggingface.co/Smith42/astroPT_v2.0)

Code here: [https://github.com/smith42/astroPT](https://github.com/smith42/astroPT)

Upstream catalogue is [on Zenodo](https://zenodo.org/records/8360385) and paper describing the catalogue is available as [Walmsley+2023](https://doi.org/10.1093/mnras/stad2919).

If you find this dataset useful please consider citing the sources below 🚀🚀:

```
@article{ref_dey2019,
	author = {Dey, A. and Schlegel, D. J. and Lang, D. and Blum, R. and Burleigh, K. and Fan, X. and Findlay, J. R. and Finkbeiner, D. and Herrera, D. and Juneau, S. and others},
	title = {{Overview of the DESI Legacy Imaging Surveys}},
	journal = {Astronomical Journal},
	volume = {157},
	number = {5},
	pages = {168},
	year = {2019},
	issn = {1538-3881},
	publisher = {The American Astronomical Society},
	doi = {10.3847/1538-3881/ab089d}
}
```

```
@article{ref_walmsley2023,
	author = {Walmsley, M. and G{\ifmmode\acute{e}\else\'{e}\fi}ron, T. and Kruk, S. and Scaife, A. M. M. and Lintott, C. and Masters, K. L. and Dawson, J. M. and Dickinson, H. and Fortson, L. and Garland, I. L. and others},
	title = {{Galaxy Zoo DESI: Detailed morphology measurements for 8.7M galaxies in the DESI Legacy Imaging Surveys}},
	journal = {Monthly Notices of the Royal Astronomical Society},
	volume = {526},
	number = {3},
	pages = {4768--4786},
	year = {2023},
	issn = {0035-8711},
	publisher = {Oxford Academic},
	doi = {10.1093/mnras/stad2919}
}
```

```
@article{ref_smith2024,
	author = {Smith, M. J. and Roberts, R. J. and Angeloudi, E. and Huertas-Company, M.},
	title = {{AstroPT: Scaling Large Observation Models for Astronomy}},
	journal = {ArXiv e-prints},
	year = {2024},
	eprint = {2405.14930},
	doi = {10.48550/arXiv.2405.14930}
}
```