--- dataset_info: features: - name: level dtype: int64 - name: level_id dtype: string - name: category dtype: string - name: words sequence: string splits: - name: train num_bytes: 55055 num_examples: 711 download_size: 32798 dataset_size: 55055 configs: - config_name: default data_files: - split: train path: data/train-* license: mit language: - en pretty_name: NYT Connections Answers size_categories: - n<1K --- Made with the following script using a local copy of [this website](https://word.tips/todays-nyt-connections-answers/): ```python import re from bs4 import BeautifulSoup from datasets import Dataset with open("Today’s NYT Connections Answers Jan 5, #574 - Daily Updates & Hints - Word Tips.htm", encoding="utf-8") as f: html = f.read() soup = BeautifulSoup(html, "html.parser") texts = re.findall(r'"([^"]*)"', "".join(soup.find_all("script")[9])) texts = [" ".join(text.split()).replace(" ,", ", ") for text in texts if ":" in text and (text.startswith("🟑") or text.startswith("🟒") or text.startswith("πŸ”΅") or text.startswith("🟣"))] levels = { "🟑": 1, "🟒": 2, "πŸ”΅": 3, "🟣": 4 } def gen(): for group in texts: level_id = group[:1] group = group[2:] category, group = group.split(":") entry = { "level": levels[level_id], "level_id": level_id, "category": category, "words": [word.strip() for word in group.split(",")] } #pprint(entry) yield entry dataset = Dataset.from_generator(gen) dataset.push_to_hub("T145/connections") ```