File size: 3,808 Bytes
ec4eff4 58f48f5 3ad3b99 58f48f5 a70090b 179538e aef3ca9 179538e ec4eff4 bac486d 2dc3f6e bac486d 877283e 2dc3f6e 877283e f260f52 877283e 5397621 2dc3f6e 5397621 46c03ce f2e5f42 5397621 2dc3f6e 5397621 f2e5f42 5397621 2dc3f6e 46c03ce 5397621 2dc3f6e 44ac4b9 2dc3f6e 44ac4b9 2dc3f6e 44ac4b9 2dc3f6e 44ac4b9 2dc3f6e 44ac4b9 2dc3f6e 44ac4b9 2dc3f6e 44ac4b9 2dc3f6e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
---
license: apache-2.0
task_categories:
- visual-question-answering
- video-classification
language:
- en
viewer: false
configs:
- config_name: splits
data_files:
- split: eval
path:
- "video_tasks"
- "image_tasks"
---
# MMEB-V2 (Massive Multimodal Embedding Benchmark)
Building upon on our original [**MMEB**](https://arxiv.org/abs/2410.05160), **MMEB-V2** expands the evaluation scope to include five new tasks: four video-based tasks — Video Retrieval, Moment Retrieval, Video Classification, and Video Question Answering — and one task focused on visual documents, Visual Document Retrieval. This comprehensive suite enables robust evaluation of multimodal embedding models across static, temporal, and structured visual data settings.
**This Hugging Face repository contains only the raw image and video files used in MMEB-V2, which need to be downloaded in advance.**
The test data for each task in MMEB-V2 is available [here](https://huggingface.co/VLM2Vec) and will be automatically downloaded and used by our code. More details on how to set it up are provided in the following sections.
|[**Github**](https://github.com/TIGER-AI-Lab/VLM2Vec) | [**🏆Leaderboard**](https://huggingface.co/spaces/TIGER-Lab/MMEB) | [**📖MMEB-V2/VLM2Vec-V2 Paper (TBA)**](https://arxiv.org/abs/2410.05160) | | [**📖MMEB-V1/VLM2Vec-V1 Paper**](https://arxiv.org/abs/2410.05160) |
## 🚀 What's New
- **\[2025.05\]** Initial release of MMEB-V2.
## Dataset Overview
We present an overview of the MMEB-V2 dataset below:
<img width="900" alt="abs" src="overview.png">
## Dataset Structure
The directory structure of this Hugging Face repository is shown below.
For video tasks, we provide both sampled frames and raw videos (the latter will be released later). For image tasks, we provide the raw images.
Files from each meta-task are zipped together, resulting in six files. For example, ``video_cls.tar.gz`` contains the sampled frames for the video classification task.
```
→ video-tasks/
├── frames/
│ ├── video_cls.tar.gz
│ ├── video_qa.tar.gz
│ ├── video_ret.tar.gz
│ └── video_mret.tar.gz
├── raw videos/ (To be released)
→ image-tasks/
├── mmeb_v1.tar.gz
└── visdoc.tar.gz
```
After downloading and unzipping these files locally, you can organize them as shown below. (You may choose to use ``Git LFS`` or ``wget`` for downloading.)
Then, simply specify the correct file path in the configuration file used by your code.
```
→ MMEB
├── video-tasks/
│ └── frames/
│ ├── video_cls/
│ │ ├── UCF101/
│ │ │ └── video_1/ # video ID
│ │ │ ├── frame1.png # frame from video_1
│ │ │ ├── frame2.png
│ │ │ └── ...
│ │ ├── HMDB51/
│ │ ├── Breakfast/
│ │ └── ... # other datasets from video classification category
│ ├── video_qa/
│ │ └── ... # video QA datasets
│ ├── video_ret/
│ │ └── ... # video retrieval datasets
│ └── video_mret/
│ └── ... # moment retrieval datasets
├── image-tasks/
│ ├── mmeb_v1/
│ │ ├── OK-VQA/
│ │ │ ├── image1.png
│ │ │ ├── image2.png
│ │ │ └── ...
│ │ ├── ImageNet-1K/
│ │ └── ... # other datasets from MMEB-V1 category
│ └── visdoc/
│ └── ... # visual document retrieval datasets
``` |