Datasets:
The dataset viewer is not available for this split.
Error code: InfoError Exception: ReadTimeout Message: (ReadTimeoutError("HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)"), '(Request ID: 4f8018ac-b965-487a-973a-94e63e2e12da)') Traceback: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 211, in compute_first_rows_from_streaming_response info = get_dataset_config_info(path=dataset, config_name=config, token=hf_token) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 277, in get_dataset_config_info builder = load_dataset_builder( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1849, in load_dataset_builder dataset_module = dataset_module_factory( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1731, in dataset_module_factory raise e1 from None File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1688, in dataset_module_factory return HubDatasetModuleFactoryWithoutScript( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1067, in get_module data_files = DataFilesDict.from_patterns( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/data_files.py", line 721, in from_patterns else DataFilesList.from_patterns( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/data_files.py", line 634, in from_patterns origin_metadata = _get_origin_metadata(data_files, download_config=download_config) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/data_files.py", line 548, in _get_origin_metadata return thread_map( File "/src/services/worker/.venv/lib/python3.9/site-packages/tqdm/contrib/concurrent.py", line 69, in thread_map return _executor_map(ThreadPoolExecutor, fn, *iterables, **tqdm_kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/tqdm/contrib/concurrent.py", line 51, in _executor_map return list(tqdm_class(ex.map(fn, *iterables, chunksize=chunksize), **kwargs)) File "/src/services/worker/.venv/lib/python3.9/site-packages/tqdm/std.py", line 1169, in __iter__ for obj in iterable: File "/usr/local/lib/python3.9/concurrent/futures/_base.py", line 609, in result_iterator yield fs.pop().result() File "/usr/local/lib/python3.9/concurrent/futures/_base.py", line 446, in result return self.__get_result() File "/usr/local/lib/python3.9/concurrent/futures/_base.py", line 391, in __get_result raise self._exception File "/usr/local/lib/python3.9/concurrent/futures/thread.py", line 58, in run result = self.fn(*self.args, **self.kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/data_files.py", line 527, in _get_single_origin_metadata resolved_path = fs.resolve_path(data_file) File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/hf_file_system.py", line 198, in resolve_path repo_and_revision_exist, err = self._repo_and_revision_exist(repo_type, repo_id, revision) File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/hf_file_system.py", line 125, in _repo_and_revision_exist self._api.repo_info( File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn return fn(*args, **kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/hf_api.py", line 2704, in repo_info return method( File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn return fn(*args, **kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/hf_api.py", line 2561, in dataset_info r = get_session().get(path, headers=headers, timeout=timeout, params=params) File "/src/services/worker/.venv/lib/python3.9/site-packages/requests/sessions.py", line 602, in get return self.request("GET", url, **kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/requests/sessions.py", line 589, in request resp = self.send(prep, **send_kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/requests/sessions.py", line 703, in send r = adapter.send(request, **kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/utils/_http.py", line 93, in send return super().send(request, *args, **kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/requests/adapters.py", line 635, in send raise ReadTimeout(e, request=request) requests.exceptions.ReadTimeout: (ReadTimeoutError("HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)"), '(Request ID: 4f8018ac-b965-487a-973a-94e63e2e12da)')
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
🙋🏻♂️Welcome to 🧑🏻🚀Tonic's🚀🚰Easy🔴Reddit🔥!
This is every "best reddit_question_best_answers" appended and produced according to the following template :
{"prompt": "This is the first prompt", "completion": "This is the first completion"}
{"prompt": "This is the second prompt", "completion": "This is the second completion"}
🌟 You can use it in shards or all together !
🌟 This dataset is internally consistent !
🤔The point is to make it easy to train models with a single correctly formatted dataset of
- 54,367,153 rows
Original Dataset :
nreimers/reddit_question_best_answers
How To Use :
Combine random shards in random quantities to produce a very high quality conversational training dataset for fine tuning or try combining rows line by line to save memory by running the following code:
# see selectbyline.py
import os
import random
# Directory containing the shard JSONL files
shard_directory = "/path/to/shard/directory"
# Get a list of all JSONL files in the directory
shard_files = [f for f in os.listdir(shard_directory) if f.endswith('.jsonl')]
# Function to read a random number of lines (between min_lines and max_lines) from a file
def read_random_lines(filename, min_lines, max_lines):
selected_lines = []
num_lines = random.randint(min_lines, max_lines)
with open(filename, 'r') as file:
lines = list(file)
if len(lines) <= num_lines:
return lines
selected_lines = random.sample(lines, num_lines)
return selected_lines
# Function to combine shards
def combine_shards(output_filename, num_combinations):
with open(output_filename, 'w') as output_file:
for _ in range(num_combinations):
selected_shard_file = random.choice(shard_files)
lines = read_random_lines(os.path.join(shard_directory, selected_shard_file), 5000, 10000)
output_file.writelines(lines)
# Example usage
combine_shards("/path/to/output/combined_shards.jsonl", 10)
Pre-Processing
import json
import os
import gzip
import logging
import re
import random
# Setup basic logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
def clean_string(s):
"""Remove special characters, keeping only alphanumeric characters and spaces."""
if isinstance(s, list):
# Extract text from each dictionary in the list and join into a single string
s = " ".join([d.get("body", "") if isinstance(d, dict) else str(d) for d in s])
return re.sub(r'[^A-Za-z0-9 ]+', '', s)
def process_file(input_file, output_file):
try:
dataset = []
with gzip.open(input_file, 'rt') as infile:
for line in infile:
# Parse the JSON line
try:
data = json.loads(line)
except json.JSONDecodeError:
logging.error(f"Invalid JSON format in {input_file}: {line}")
continue
# Extract and clean the 'body' and 'answers' fields
prompt = clean_string(data.get("body", ""))
completion = clean_string(data.get("answers", ""))
# For each body found, make a new row and duplicate the prompt for it
if isinstance(data.get("body", ""), list):
for body in data.get("body", []):
cleaned_body = clean_string(body)
dataset.append({"prompt": cleaned_body, "completion": completion})
else:
dataset.append({"prompt": prompt, "completion": completion})
# Shuffle the dataset
random.shuffle(dataset)
# Write the shuffled dataset to the output file
with open(output_file, 'a') as outfile:
for item in dataset:
json.dump(item, outfile)
outfile.write('\n')
logging.info(f"Processed file: {input_file}")
except Exception as e:
logging.error(f"Error processing file {input_file}: {e}")
def process_files(file_list, output_dir):
# Ensure the output directory exists
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# Create a single output file path
output_file = os.path.join(output_dir, 'synthesized_dataset.jsonl')
for input_file in file_list:
process_file(input_file, output_file)
# Update with your list of .gz file paths
file_list = [r'C:\Users\MeMyself\FILES, r"C:\Users\MeMyself\FILES" ] # Update with your list of .gz file paths
output_dir = r'C:\Users\MeMyself\reddit_question_best_answers\processed'
process_files(file_list, output_dir)
sharding script :
import json
import os
def read_dataset(file_path):
try:
with open(file_path, 'r') as file:
data = [json.loads(line) for line in file]
print(f"Dataset loaded successfully from {file_path}.")
return data
except Exception as e:
print(f"Error reading dataset from {file_path}: {e}")
return []
def shard_dataset(dataset, num_shards):
shard_size = len(dataset) // num_shards
shards = [dataset[i:i + shard_size] for i in range(0, len(dataset), shard_size)]
if len(shards) > num_shards:
shards[num_shards - 1].extend(shards.pop())
print(f"Dataset sharded into {num_shards} parts.")
return shards
def write_shards(shards, output_dir):
if not os.path.exists(output_dir):
os.makedirs(output_dir)
print(f"Created output directory at {output_dir}.")
for i, shard in enumerate(shards):
shard_file = os.path.join(output_dir, f'shard_{i+1}.jsonl')
with open(shard_file, 'w') as file:
for item in shard:
json.dump(item, file)
file.write('\n')
print(f"Shard {i+1} written to {shard_file}.")
def main():
input_file = 'path_to_processed_dataset.jsonl' # Update with your processed dataset file path
output_dir = 'sharded_dataset' # Update with your output directory for shards
num_shards = 33
dataset = read_dataset(input_file)
if dataset:
shards = shard_dataset(dataset, num_shards)
write_shards(shards, output_dir)
print("All shards have been successfully written.")
else:
print("No dataset to process.")
if __name__ == "__main__":
main()
Disclaimer :
🌟Re-format this dataset before use.
🌟Probably there's a big problem with the token count on these long answers 😉
🌟Good Luck ! 🧑🏻🚀🚀
- Downloads last month
- 127