TrainingDataPro commited on
Commit
abcdb78
·
1 Parent(s): 7c95af9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +60 -0
README.md CHANGED
@@ -1,3 +1,63 @@
1
  ---
2
  license: cc-by-nc-nd-4.0
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: cc-by-nc-nd-4.0
3
+ task_categories:
4
+ - text-classification
5
+ language:
6
+ - en
7
+ - fr
8
+ - ja
9
+ - it
10
+ - de
11
+ tags:
12
+ - code
13
+ - finance
14
  ---
15
+
16
+ # Reviews on Messengers Dataset 🤳 ⭐️
17
+
18
+ The Reviews on Messengers Dataset is a comprehensive collection of **200** the most recent customer reviews on **6** messengers obtained from the popular app store, **Google Play**. See the list of the apps below.
19
+ This dataset encompasses reviews written in **5** different languages: English, French, German, Italian, Japanese.
20
+
21
+ The dataset's multilingual nature makes it useful for natural language processing tasks, sentiment analysis algorithms, and other machine learning applications that require diverse language data for training and evaluation.
22
+
23
+ The dataset can be highly valuable in training and fine-tuning machine learning models to automatically classify sentiments, predict customer satisfaction, or extract key information from customer reviews.
24
+
25
+ The data was scraped with `google-play-scraper` python lib by [TrainingData Team](https://trainingdata.pro/data-market?utm_source=kaggle&utm_medium=cpc&utm_campaign=6000-messengers-reviews-google-play).
26
+
27
+ ### Apps in the dataset and their IDs:
28
+ - Telegram: `'org.telegram.messenger'`,
29
+ - Facebook Messenger: `'com.facebook.orca'`,
30
+ - Whats App: `'com.whatsapp'`,
31
+ - Viber: `'com.viber.voip'`,
32
+ - Snapchat: `'com.snapchat.android'`,
33
+ - We Chat: `'com.tencent.mm'`.
34
+
35
+ ### Languages in the dataset:
36
+ - English: `EN`,
37
+ - French: `FR`,
38
+ - German: `DE`,
39
+ - Italian : `IT`,
40
+ - Japanese: `JP`
41
+
42
+ # Content
43
+ For each item, we extracted:
44
+ - **reviewId**: ID of the review,
45
+ - **userName**: name of the reviewer,
46
+ - **userImage**: profile image of the reviewer,
47
+ - **content**: text of the review,
48
+ - **score**: number of stars given to the review,
49
+ - **thumbsUpCount**: number of likes on the review,
50
+ - **at**: date of the review,
51
+ - **replyContent**: text of the developer's comment,
52
+ - **repliedAt**: date of the developer's comment,
53
+ - **appVersion**: version of the app,
54
+ - **userLang**: language of the review,
55
+ - **app_id**: ID of the app
56
+
57
+ # Try to find the messenger with the most attentive support 😉
58
+
59
+ ## **[TrainingData](https://trainingdata.pro/data-market?utm_source=huggingface&utm_medium=cpc&utm_campaign=messengers-reviews-google-play)** provides high-quality data annotation tailored to your needs
60
+
61
+ More datasets in TrainingData's Kaggle account: **https://www.kaggle.com/trainingdatapro/datasets**
62
+
63
+ TrainingData's GitHub: **https://github.com/Trainingdata-datamarket/TrainingData_All_datasets**