Datasets:

Modalities:
Image
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
Dask
License:
Llabres commited on
Commit
3eec0bf
·
1 Parent(s): d691f89

Updated Readme

Browse files
Files changed (1) hide show
  1. README.md +69 -2
README.md CHANGED
@@ -177,6 +177,8 @@ configs:
177
 
178
  This is the dataset for the [ICDAR 2025 Competition on Comics Understanding in the Era of Foundational Models](https://rrc.cvc.uab.es/?ch=31&com=introduction)
179
 
 
 
180
  The dataset contains five subtask or skills:
181
 
182
  ### Sequence Filling
@@ -423,8 +425,73 @@ dataset.save_to_disk(f"ComPAP_{skill}_{split}_single_images")
423
 
424
  </details>
425
 
426
- ## Summit Results and Leaderboard
427
- The competition is hosted in the [Robust Reading Competition website](https://rrc.cvc.uab.es/?ch=31&com=introduction) and the leaderboard is available [here](https://rrc.cvc.uab.es/?ch=31&com=evaluation).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
428
 
429
  ## Citation
430
  _coming soon_
 
177
 
178
  This is the dataset for the [ICDAR 2025 Competition on Comics Understanding in the Era of Foundational Models](https://rrc.cvc.uab.es/?ch=31&com=introduction)
179
 
180
+ The competition is hosted in the [Robust Reading Competition website](https://rrc.cvc.uab.es/?ch=31&com=introduction) and the leaderboard is available [here](https://rrc.cvc.uab.es/?ch=31&com=evaluation).
181
+
182
  The dataset contains five subtask or skills:
183
 
184
  ### Sequence Filling
 
425
 
426
  </details>
427
 
428
+ ## Evaluation
429
+
430
+ The evaluation metric for all tasks is the accuracy of the model's predictions. The overall accuracy is calculated as the weighted average of the accuracy of each subtask, with the weights being the number of examples in each subtask.
431
+
432
+ To evaluate on the test set you must summit your predictions to the [Robust Reading Competition website](https://rrc.cvc.uab.es/?ch=31&com=introduction), as a json file with the following structure:
433
+
434
+ ```json
435
+ [
436
+ { "sample_id" : "sample_id_0", "correct_panel_id" : 3},
437
+ { "sample_id" : "sample_id_1", "correct_panel_id" : 1},
438
+ { "sample_id" : "sample_id_2", "correct_panel_id" : 4},
439
+ ...,
440
+ ]
441
+ ```
442
+
443
+ Where `sample_id` is the id of the sample, `correct_panel_id` is the prediction of your model as the index of the correct panel in the options.
444
+
445
+ <details>
446
+
447
+ <summary>Pseudocode for the evaluation on val set, adapt for your model:</summary>
448
+
449
+ ```python
450
+ split = "val"
451
+ skills = {
452
+ "sequence_filling": {
453
+ "num_examples": 262
454
+ },
455
+ "char_coherence": {
456
+ "num_examples": 143
457
+ },
458
+ "visual_closure": {
459
+ "num_examples": 300
460
+ },
461
+ "text_closure": {
462
+ "num_examples": 259
463
+ },
464
+ "caption_relevance": {
465
+ "num_examples": 262
466
+ }
467
+ }
468
+
469
+ for skill in skills:
470
+ dataset = load_dataset("VLR-CVC/ComPAP", skill, split=split)
471
+ correct = 0
472
+ total = 0
473
+ for example in dataset:
474
+ # Your model prediction
475
+ prediction = model.generate(example)
476
+ prediction = post_process(prediction)
477
+ if prediction == example["solution_index"]:
478
+ correct += 1
479
+ total += 1
480
+ accuracy = correct / total
481
+ print(f"Accuracy for {skill}: {accuracy}")
482
+
483
+ assert total == skills[skill]["num_examples"]
484
+ skills[skill]["accuracy"] = accuracy
485
+
486
+ # Calculate overall accuracy
487
+ total_examples = sum(skill["num_examples"] for skill in skills.values())
488
+ overall_accuracy = sum(skill["num_examples"] * skill["accuracy"] for skill in skills.values()) / total_examples
489
+ print(f"Overall accuracy: {overall_accuracy}")
490
+
491
+ ```
492
+
493
+ </details>
494
+
495
 
496
  ## Citation
497
  _coming soon_