VerisimilitudeX commited on
Commit
f0cc52f
·
verified ·
1 Parent(s): b73f34d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -34
README.md CHANGED
@@ -13,7 +13,7 @@ size_categories:
13
  - 100B<n<1T
14
  ---
15
 
16
- # Epigenomic Data for ME/CFS and Long COVID Classification
17
 
18
  [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
19
 
@@ -100,28 +100,6 @@ root/
100
  - Shares some clinical features with ME/CFS
101
  - Similarly lacks definitive biomarkers and is diagnosed primarily by clinical assessment
102
 
103
- ## Data Processing Guidelines
104
-
105
- To process this methylation data, we recommend the following pipeline:
106
-
107
- 1. **Quality Control**:
108
- - Filter out probes on sex chromosomes
109
- - Remove known polymorphic or cross-reactive probes
110
- - Perform sample quality checks (detection p-values, intensity distributions)
111
-
112
- 2. **Normalization**:
113
- - Beta-value calculation
114
- - BMIQ normalization for type I/II bias correction
115
- - Optional: ComBat batch correction if combining multiple datasets
116
-
117
- 3. **Feature Selection**:
118
- - Differential methylation analysis to identify disease-associated CpG sites
119
- - Optional: Variance filtering to remove low-variability probes
120
-
121
- 4. **Analysis**:
122
- - Recommended: Apply the Epigenomic Transformer Pipeline or similar methods
123
- - Alternative approaches: Logistic regression, random forest, XGBoost
124
-
125
  ## Usage Example
126
 
127
  Here's a simple example of how to load and process this data using the `minfi` package in R:
@@ -147,16 +125,6 @@ beta_norm <- BMIQ(beta)
147
  densityPlot(beta_norm, sampGroups=targets$Group)
148
  ```
149
 
150
- ## Research Applications
151
-
152
- This dataset is suitable for:
153
-
154
- 1. Developing and validating diagnostic classifiers for ME/CFS and Long COVID
155
- 2. Identifying epigenetic biomarkers specific to each condition
156
- 3. Studying the biological mechanisms underlying these post-viral illnesses
157
- 4. Comparing epigenetic patterns between ME/CFS and Long COVID
158
- 5. Training machine learning models for disease classification
159
-
160
  ## Citation Information
161
 
162
  If you use this dataset in your research, please cite:
@@ -168,7 +136,7 @@ University of Victoria.
168
 
169
  ## Additional Resources
170
 
171
- For more information about the Epigenomic Transformer Pipeline developed using this data, please visit our [GitHub repository](https://github.com/your-repo-link).
172
 
173
  ## Acknowledgements
174
 
 
13
  - 100B<n<1T
14
  ---
15
 
16
+ # Transformer Attention Heads in Epigenetics of ME/CFS and Long COVID
17
 
18
  [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
19
 
 
100
  - Shares some clinical features with ME/CFS
101
  - Similarly lacks definitive biomarkers and is diagnosed primarily by clinical assessment
102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
103
  ## Usage Example
104
 
105
  Here's a simple example of how to load and process this data using the `minfi` package in R:
 
125
  densityPlot(beta_norm, sampGroups=targets$Group)
126
  ```
127
 
 
 
 
 
 
 
 
 
 
 
128
  ## Citation Information
129
 
130
  If you use this dataset in your research, please cite:
 
136
 
137
  ## Additional Resources
138
 
139
+ For more information about the Epigenomic Transformer Pipeline developed using this data, please visit our [GitHub repository](https:github.com/VerisimilitudeX/EpiMECoV).
140
 
141
  ## Acknowledgements
142