Datasets:
File size: 3,305 Bytes
6b427f4 1c60bb5 6b427f4 1c60bb5 6b427f4 1c60bb5 6b427f4 1c60bb5 6b427f4 1c60bb5 6b427f4 1c60bb5 6b427f4 1c60bb5 6b427f4 1c60bb5 6b427f4 1c60bb5 6b427f4 1c60bb5 6b427f4 1c60bb5 6b427f4 1c60bb5 6b427f4 1c60bb5 6b427f4 1c60bb5 6b427f4 1c60bb5 6b427f4 1c60bb5 6b427f4 1c60bb5 6b427f4 1c60bb5 6b427f4 1c60bb5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
---
annotations_creators: []
language: en
license: other
size_categories:
- 10K<n<100K
task_categories:
- video-classification
task_ids: []
pretty_name: World Level American Sign Language
tags:
- fiftyone
- video
- activity-recognition
- asl
- sign-language
dataset_summary: >
![image/png](dataset_preview.gif)
This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 11980
samples.
## Installation
If you haven't already, install FiftyOne:
```bash
pip install -U fiftyone
```
## Usage
```python
import fiftyone as fo
import fiftyone.utils.huggingface as fouh
# Load the dataset
# Note: other available arguments include 'max_samples', etc
dataset = fouh.load_from_hub("Voxel51/WLASL")
# Launch the App
session = fo.launch_app(dataset)
```
---
# Dataset Card for WLASL
<!-- Provide a quick summary of the dataset. -->
![image/png](dataset_preview.gif)
This is a [FiftyOne](https://github.com/voxel51/fiftyone) video dataset with 11980 samples.
## Installation
If you haven't already, install FiftyOne:
```bash
pip install -U fiftyone
```
## Usage
```python
import fiftyone as fo
import fiftyone.utils.huggingface as fouh
# Load the dataset
# Note: other available arguments include 'max_samples', etc
dataset = fouh.load_from_hub("Voxel51/WLASL")
# Launch the App
session = fo.launch_app(dataset)
```
## Dataset Details
### Dataset Description
WLASL is the largest video dataset for Word-Level American Sign Language (ASL) recognition, which features 2,000 common different words in ASL. The authors hope WLASL will facilitate the research in sign language understanding and eventually benefit the communication between deaf and hearing communities.
- **Curated by:** Dongxu Li and Hongdong Li
- **Language(s) (NLP):** en
- **License:** other
### Dataset Sources
<!-- Provide the basic links for the dataset. -->
- **Repository:** https://github.com/dxli94/WLASL
- **Paper:** https://arxiv.org/abs/1910.11006
- **Homepage:** https://dxli94.github.io/WLASL/
- **Demo:** https://try.fiftyone.ai/datasets/asl-dataset/samples
## Uses
All the WLASL data is intended for academic and computational use only. No commercial usage is allowed. Licensed under the [Computational Use of Data Agreement](https://github.com/microsoft/Computational-Use-of-Data-Agreement/releases/tag/v1.0) (C-UDA)
## Citation
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
```bibtex
@misc{li2020wordlevel,
title={Word-level Deep Sign Language Recognition from Video: A New Large-scale Dataset and Methods Comparison},
author={Dongxu Li and Cristian Rodriguez Opazo and Xin Yu and Hongdong Li},
year={2020},
eprint={1910.11006},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
@inproceedings{li2020transferring,
title={Transferring cross-domain knowledge for video sign language recognition},
author={Li, Dongxu and Yu, Xin and Xu, Chenchen and Petersson, Lars and Li, Hongdong},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={6205--6214},
year={2020}
}
```
## Dataset Card Authors
[Jacob Marks](https://huggingface.co/jamarks)
|