Upload wizmap_diffusiondb_vidprom_final.py
Browse files
wizmap_diffusiondb_vidprom_final.py
ADDED
@@ -0,0 +1,283 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding: utf-8
|
3 |
+
|
4 |
+
# In[1]:
|
5 |
+
|
6 |
+
|
7 |
+
from VidProM.isc.io import read_descriptors
|
8 |
+
|
9 |
+
|
10 |
+
# In[2]:
|
11 |
+
|
12 |
+
|
13 |
+
vid_name, vid_feature = read_descriptors(['./VidProM/vidprom_embed.hdf5'])
|
14 |
+
|
15 |
+
|
16 |
+
# In[3]:
|
17 |
+
|
18 |
+
|
19 |
+
vid_feature.shape
|
20 |
+
|
21 |
+
|
22 |
+
# In[4]:
|
23 |
+
|
24 |
+
|
25 |
+
import re
|
26 |
+
|
27 |
+
def remove_numbers_and_words(s):
|
28 |
+
# 删除所有数字
|
29 |
+
s = re.sub(r'\d+', '', s)
|
30 |
+
# 删除指定的单词
|
31 |
+
s = re.sub(r'(image|message|attachment|quot|make)', '', s, flags=re.IGNORECASE)
|
32 |
+
return s
|
33 |
+
|
34 |
+
|
35 |
+
# In[5]:
|
36 |
+
|
37 |
+
|
38 |
+
import pandas as pd
|
39 |
+
df = pd.read_csv('./prompts4video_unique.csv')
|
40 |
+
imdb_reviews = list(df['prompt'])
|
41 |
+
imdb_reviews_clean = [i.split('-')[0] for i in imdb_reviews]
|
42 |
+
vidprom_prompts = [remove_numbers_and_words(i) for i in imdb_reviews_clean]
|
43 |
+
|
44 |
+
|
45 |
+
# In[6]:
|
46 |
+
|
47 |
+
|
48 |
+
len(vidprom_prompts)
|
49 |
+
|
50 |
+
|
51 |
+
# In[7]:
|
52 |
+
|
53 |
+
|
54 |
+
diffdb_name, diffdb_feature = read_descriptors(['./DiffusionDB/diffusiondb_embed.hdf5'])
|
55 |
+
|
56 |
+
|
57 |
+
# In[8]:
|
58 |
+
|
59 |
+
|
60 |
+
diffdb_feature.shape
|
61 |
+
|
62 |
+
|
63 |
+
# In[1]:
|
64 |
+
|
65 |
+
|
66 |
+
import pandas as pd
|
67 |
+
path_to_prompt_parquet = "DiffusionDB/metadata-large.parquet"
|
68 |
+
prompts = pd.read_parquet(
|
69 |
+
path_to_prompt_parquet,
|
70 |
+
columns=['prompt']
|
71 |
+
)
|
72 |
+
diffdb_prompts = sorted(list(set(prompts['prompt'])))
|
73 |
+
print("Length of prompts: ", len(diffdb_prompts))
|
74 |
+
|
75 |
+
|
76 |
+
# In[2]:
|
77 |
+
|
78 |
+
|
79 |
+
diffdb_prompts_1 = list(set(prompts['prompt']))
|
80 |
+
|
81 |
+
|
82 |
+
# In[3]:
|
83 |
+
|
84 |
+
|
85 |
+
with open("diffusiondb_prompts.txt", 'w', encoding='utf-8') as file:
|
86 |
+
for fruit in diffdb_prompts_1:
|
87 |
+
file.write(fruit + '\n')
|
88 |
+
|
89 |
+
|
90 |
+
# In[5]:
|
91 |
+
|
92 |
+
|
93 |
+
len(diffdb_prompts_1)
|
94 |
+
|
95 |
+
|
96 |
+
# In[ ]:
|
97 |
+
|
98 |
+
|
99 |
+
hf.upload_file(path_or_fileobj="./wizmap_vidprom_diffusiondb_final/data_vidprom_diffusiondb.ndjson", \
|
100 |
+
path_in_repo="data_vidprom_diffusiondb.ndjson", repo_id="WenhaoWang/VidProM", \
|
101 |
+
repo_type="dataset")
|
102 |
+
|
103 |
+
|
104 |
+
# In[ ]:
|
105 |
+
|
106 |
+
|
107 |
+
|
108 |
+
|
109 |
+
|
110 |
+
# In[ ]:
|
111 |
+
|
112 |
+
|
113 |
+
|
114 |
+
|
115 |
+
|
116 |
+
# In[ ]:
|
117 |
+
|
118 |
+
|
119 |
+
import umap
|
120 |
+
import numpy as np
|
121 |
+
embedding_0 = umap.UMAP(n_neighbors=60,
|
122 |
+
min_dist=0.1,
|
123 |
+
metric='correlation').fit_transform(np.concatenate([vid_feature,diffdb_feature]))
|
124 |
+
|
125 |
+
|
126 |
+
# In[ ]:
|
127 |
+
|
128 |
+
|
129 |
+
np.save('umap_diffusiondb_vidprom.npy', embedding_0)
|
130 |
+
|
131 |
+
|
132 |
+
# In[10]:
|
133 |
+
|
134 |
+
|
135 |
+
import numpy as np
|
136 |
+
embedding_0 = np.load('umap_diffusiondb_vidprom.npy')
|
137 |
+
|
138 |
+
|
139 |
+
# In[11]:
|
140 |
+
|
141 |
+
|
142 |
+
texts = vidprom_prompts + diffdb_prompts
|
143 |
+
xs = embedding_0[:, 0].astype(float).tolist()
|
144 |
+
ys = embedding_0[:, 1].astype(float).tolist()
|
145 |
+
|
146 |
+
|
147 |
+
# In[12]:
|
148 |
+
|
149 |
+
|
150 |
+
from glob import glob
|
151 |
+
from os.path import exists, join, basename
|
152 |
+
from tqdm import tqdm
|
153 |
+
from json import load, dump
|
154 |
+
from matplotlib import pyplot as plt
|
155 |
+
from collections import Counter
|
156 |
+
|
157 |
+
from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer
|
158 |
+
from quadtreed3 import Quadtree, Node
|
159 |
+
from scipy.sparse import csr_matrix
|
160 |
+
from sklearn.neighbors import KernelDensity
|
161 |
+
from scipy.stats import norm
|
162 |
+
from typing import Tuple
|
163 |
+
from io import BytesIO
|
164 |
+
from umap import UMAP
|
165 |
+
|
166 |
+
import pandas as pd
|
167 |
+
import numpy as np
|
168 |
+
import ndjson
|
169 |
+
import requests
|
170 |
+
import urllib
|
171 |
+
import wizmap
|
172 |
+
|
173 |
+
SEED = 20230501
|
174 |
+
|
175 |
+
plt.rcParams['figure.dpi'] = 300
|
176 |
+
|
177 |
+
|
178 |
+
# In[13]:
|
179 |
+
|
180 |
+
|
181 |
+
labels = [0]*len(vidprom_prompts) + [1] *len(diffdb_prompts)
|
182 |
+
|
183 |
+
|
184 |
+
# In[14]:
|
185 |
+
|
186 |
+
|
187 |
+
len(labels)
|
188 |
+
|
189 |
+
|
190 |
+
# In[15]:
|
191 |
+
|
192 |
+
|
193 |
+
group_names = ["VidProM", "DiffusionDB"]
|
194 |
+
|
195 |
+
|
196 |
+
# In[16]:
|
197 |
+
|
198 |
+
|
199 |
+
grid_dict = wizmap.generate_grid_dict(embedding_0[:, 0].astype(float).tolist(), \
|
200 |
+
embedding_0[:, 1].astype(float).tolist(), \
|
201 |
+
texts, \
|
202 |
+
embedding_name = 'VidProM_DiffusionDB', \
|
203 |
+
labels = labels, \
|
204 |
+
group_names = group_names)
|
205 |
+
|
206 |
+
|
207 |
+
# In[17]:
|
208 |
+
|
209 |
+
|
210 |
+
print(grid_dict.keys())
|
211 |
+
|
212 |
+
|
213 |
+
# In[18]:
|
214 |
+
|
215 |
+
|
216 |
+
data_list = wizmap.generate_data_list(xs, ys, texts, labels = labels)
|
217 |
+
|
218 |
+
|
219 |
+
# In[19]:
|
220 |
+
|
221 |
+
|
222 |
+
get_ipython().system('mkdir wizmap_vidprom_diffusiondb_final')
|
223 |
+
|
224 |
+
|
225 |
+
# In[20]:
|
226 |
+
|
227 |
+
|
228 |
+
wizmap.save_json_files(data_list, grid_dict, output_dir='./wizmap_vidprom_diffusiondb_final')
|
229 |
+
|
230 |
+
|
231 |
+
# In[21]:
|
232 |
+
|
233 |
+
|
234 |
+
get_ipython().system('mv ./wizmap_vidprom_diffusiondb_final/data.ndjson ./wizmap_vidprom_diffusiondb_final/data_vidprom_diffusiondb.ndjson')
|
235 |
+
|
236 |
+
|
237 |
+
# In[22]:
|
238 |
+
|
239 |
+
|
240 |
+
get_ipython().system('mv ./wizmap_vidprom_diffusiondb_final/grid.json ./wizmap_vidprom_diffusiondb_final/grid_vidprom_diffusiondb.json')
|
241 |
+
|
242 |
+
|
243 |
+
# In[6]:
|
244 |
+
|
245 |
+
|
246 |
+
import os
|
247 |
+
|
248 |
+
# os.environ["HF_ENDPOINT"] = "http://localhost:5564"
|
249 |
+
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
250 |
+
|
251 |
+
from huggingface_hub import HfApi, logging
|
252 |
+
|
253 |
+
logging.set_verbosity_debug()
|
254 |
+
hf = HfApi(
|
255 |
+
endpoint="https://huggingface.co", # Can be a Private Hub endpoint.
|
256 |
+
token="xxxx", # Token is not persisted on the machine.
|
257 |
+
)
|
258 |
+
|
259 |
+
|
260 |
+
# In[ ]:
|
261 |
+
|
262 |
+
|
263 |
+
hf.upload_file(path_or_fileobj="./wizmap_vidprom_diffusiondb_final/grid_vidprom_diffusiondb.json", \
|
264 |
+
path_in_repo="grid_vidprom_diffusiondb.json", repo_id="WenhaoWang/VidProM", \
|
265 |
+
repo_type="dataset")
|
266 |
+
|
267 |
+
|
268 |
+
# In[24]:
|
269 |
+
|
270 |
+
|
271 |
+
hf.upload_file(path_or_fileobj="./wizmap_vidprom_diffusiondb_final/grid_vidprom_diffusiondb.json", \
|
272 |
+
path_in_repo="grid_vidprom_diffusiondb.json", repo_id="WenhaoWang/VidProM", \
|
273 |
+
repo_type="dataset")
|
274 |
+
|
275 |
+
|
276 |
+
# In[25]:
|
277 |
+
|
278 |
+
|
279 |
+
hf.upload_file(path_or_fileobj="./wizmap_vidprom_diffusiondb_final/data_vidprom_diffusiondb.ndjson", \
|
280 |
+
path_in_repo="data_vidprom_diffusiondb.ndjson", repo_id="WenhaoWang/VidProM", \
|
281 |
+
repo_type="dataset")
|
282 |
+
|
283 |
+
|