#!/usr/bin/env python # coding: utf-8 # In[1]: from VidProM.isc.io import read_descriptors # In[2]: vid_name, vid_feature = read_descriptors(['./VidProM/vidprom_embed.hdf5']) # In[3]: vid_feature.shape # In[4]: import re def remove_numbers_and_words(s): # 删除所有数字 s = re.sub(r'\d+', '', s) # 删除指定的单词 s = re.sub(r'(image|message|attachment|quot|make)', '', s, flags=re.IGNORECASE) return s # In[5]: import pandas as pd df = pd.read_csv('./prompts4video_unique.csv') imdb_reviews = list(df['prompt']) imdb_reviews_clean = [i.split('-')[0] for i in imdb_reviews] vidprom_prompts = [remove_numbers_and_words(i) for i in imdb_reviews_clean] # In[6]: len(vidprom_prompts) # In[7]: diffdb_name, diffdb_feature = read_descriptors(['./DiffusionDB/diffusiondb_embed.hdf5']) # In[8]: diffdb_feature.shape # In[1]: import pandas as pd path_to_prompt_parquet = "DiffusionDB/metadata-large.parquet" prompts = pd.read_parquet( path_to_prompt_parquet, columns=['prompt'] ) diffdb_prompts = sorted(list(set(prompts['prompt']))) print("Length of prompts: ", len(diffdb_prompts)) # In[2]: diffdb_prompts_1 = list(set(prompts['prompt'])) # In[3]: with open("diffusiondb_prompts.txt", 'w', encoding='utf-8') as file: for fruit in diffdb_prompts_1: file.write(fruit + '\n') # In[5]: len(diffdb_prompts_1) # In[ ]: hf.upload_file(path_or_fileobj="./wizmap_vidprom_diffusiondb_final/data_vidprom_diffusiondb.ndjson", \ path_in_repo="data_vidprom_diffusiondb.ndjson", repo_id="WenhaoWang/VidProM", \ repo_type="dataset") # In[ ]: # In[ ]: # In[ ]: import umap import numpy as np embedding_0 = umap.UMAP(n_neighbors=60, min_dist=0.1, metric='correlation').fit_transform(np.concatenate([vid_feature,diffdb_feature])) # In[ ]: np.save('umap_diffusiondb_vidprom.npy', embedding_0) # In[10]: import numpy as np embedding_0 = np.load('umap_diffusiondb_vidprom.npy') # In[11]: texts = vidprom_prompts + diffdb_prompts xs = embedding_0[:, 0].astype(float).tolist() ys = embedding_0[:, 1].astype(float).tolist() # In[12]: from glob import glob from os.path import exists, join, basename from tqdm import tqdm from json import load, dump from matplotlib import pyplot as plt from collections import Counter from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer from quadtreed3 import Quadtree, Node from scipy.sparse import csr_matrix from sklearn.neighbors import KernelDensity from scipy.stats import norm from typing import Tuple from io import BytesIO from umap import UMAP import pandas as pd import numpy as np import ndjson import requests import urllib import wizmap SEED = 20230501 plt.rcParams['figure.dpi'] = 300 # In[13]: labels = [0]*len(vidprom_prompts) + [1] *len(diffdb_prompts) # In[14]: len(labels) # In[15]: group_names = ["VidProM", "DiffusionDB"] # In[16]: grid_dict = wizmap.generate_grid_dict(embedding_0[:, 0].astype(float).tolist(), \ embedding_0[:, 1].astype(float).tolist(), \ texts, \ embedding_name = 'VidProM_DiffusionDB', \ labels = labels, \ group_names = group_names) # In[17]: print(grid_dict.keys()) # In[18]: data_list = wizmap.generate_data_list(xs, ys, texts, labels = labels) # In[19]: get_ipython().system('mkdir wizmap_vidprom_diffusiondb_final') # In[20]: wizmap.save_json_files(data_list, grid_dict, output_dir='./wizmap_vidprom_diffusiondb_final') # In[21]: get_ipython().system('mv ./wizmap_vidprom_diffusiondb_final/data.ndjson ./wizmap_vidprom_diffusiondb_final/data_vidprom_diffusiondb.ndjson') # In[22]: get_ipython().system('mv ./wizmap_vidprom_diffusiondb_final/grid.json ./wizmap_vidprom_diffusiondb_final/grid_vidprom_diffusiondb.json') # In[6]: import os # os.environ["HF_ENDPOINT"] = "http://localhost:5564" os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" from huggingface_hub import HfApi, logging logging.set_verbosity_debug() hf = HfApi( endpoint="https://huggingface.co", # Can be a Private Hub endpoint. token="xxxx", # Token is not persisted on the machine. ) # In[ ]: hf.upload_file(path_or_fileobj="./wizmap_vidprom_diffusiondb_final/grid_vidprom_diffusiondb.json", \ path_in_repo="grid_vidprom_diffusiondb.json", repo_id="WenhaoWang/VidProM", \ repo_type="dataset") # In[24]: hf.upload_file(path_or_fileobj="./wizmap_vidprom_diffusiondb_final/grid_vidprom_diffusiondb.json", \ path_in_repo="grid_vidprom_diffusiondb.json", repo_id="WenhaoWang/VidProM", \ repo_type="dataset") # In[25]: hf.upload_file(path_or_fileobj="./wizmap_vidprom_diffusiondb_final/data_vidprom_diffusiondb.ndjson", \ path_in_repo="data_vidprom_diffusiondb.ndjson", repo_id="WenhaoWang/VidProM", \ repo_type="dataset")