|
"""Low memory cross entropy without materilizing the logits |
|
|
|
This module enables long-context training of large vocab models, e.g., Gemma has 250K vocab and Llama 3 has 150K |
|
|
|
Yao Fu, University of Edinburgh |
|
[email protected] |
|
""" |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
|
|
|
|
def cross_ent_normal(x, weight, labels): |
|
logits = torch.einsum("bsh, vh -> bsv", x, weight) |
|
vocab = weight.size(0) |
|
loss = F.cross_entropy(logits.view(-1, vocab), labels.view(-1)) |
|
return loss |
|
|
|
class LowMemLogitProjCrossEnt(torch.autograd.Function): |
|
"""Low memory implementation of logits projection plus cross entropy loss. |
|
Useful for reducing the peak memory when dealing with vocabulary larger than 100000 |
|
|
|
TODO: integrate this function into easy context |
|
|
|
Two tricks used here |
|
1. Shard the data to reduce peak memory |
|
2. Do not save the logits |
|
""" |
|
|
|
@staticmethod |
|
|
|
def forward(ctx, x: torch.Tensor, weight: torch.Tensor, labels: torch.Tensor, sp: int=4): |
|
""" |
|
Args: |
|
x: size = [batch, seqlen, hidden] |
|
weight: size = [vocab, hidden] |
|
labels: size = [batch, seqlen] |
|
""" |
|
bsz, seqlen, hidden = x.size() |
|
vocab = weight.size(0) |
|
micro_seqlen = seqlen // sp |
|
|
|
loss = 0 |
|
for i in range(sp): |
|
logits_i_slice = torch.einsum("bsh, vh -> bsv", x[:, micro_seqlen * i: micro_seqlen * (i + 1)], weight) |
|
loss_i = F.cross_entropy(logits_i_slice.view(-1, vocab), labels[:, micro_seqlen * i: micro_seqlen * (i + 1)].view(-1)) |
|
loss = loss + loss_i |
|
|
|
loss = loss / sp |
|
ctx.save_for_backward(x, weight, labels) |
|
ctx.sp = sp |
|
return loss |
|
|
|
|
|
@staticmethod |
|
def backward(ctx, grad_output): |
|
"""Manually calculate the gradient in a memory-efficient way |
|
Ref: https://indii.org/blog/gradients-of-softmax-and-logsumexp/ |
|
""" |
|
x, weight, labels = ctx.saved_tensors |
|
sp = ctx.sp |
|
device = x.device |
|
dtype = x.dtype |
|
bsz, seqlen, hidden = x.size() |
|
vocab, hidden = weight.size() |
|
micro_seqlen = seqlen // sp |
|
|
|
d_weight = torch.zeros_like(weight, device=weight.device) |
|
d_x = [] |
|
for i in range(sp): |
|
x_ = x[:, micro_seqlen * i: micro_seqlen * (i + 1)] |
|
p = F.softmax( |
|
torch.einsum("blh, vh -> blv", x_, weight), |
|
dim=-1 |
|
) |
|
|
|
|
|
|
|
d_logits = -p.view(-1) |
|
labels_ = labels[:, micro_seqlen * i: micro_seqlen * (i + 1)].view(-1) |
|
index = torch.arange(bsz * micro_seqlen, device=device) * vocab + labels_ |
|
source = torch.tensor([1] * bsz * micro_seqlen, dtype=dtype, device=device) |
|
d_logits.index_add_(0, index, source) |
|
d_logits = -d_logits.view(bsz, micro_seqlen, vocab) / (bsz * seqlen) |
|
|
|
|
|
d_x.append(torch.einsum("blv, vh -> blh", d_logits, weight)) |
|
d_weight += torch.einsum("blv, blh -> vh", d_logits, x_) |
|
|
|
d_weight = grad_output * d_weight |
|
d_x = grad_output * torch.concat(d_x, 1) |
|
return d_x, d_weight, None, None |
|
|
|
low_mem_cross_ent = LowMemLogitProjCrossEnt.apply |