VideoRoPE / vision_niah_d /eval_vision_niah.py
Wiselnn's picture
Upload folder using huggingface_hub (#1)
4eedc1a verified
import argparse
import gc
import sys
import torch
from transformers import AutoTokenizer
from transformers import LlamaForCausalLM
from easy_context import Qwen2ForCausalLM_RingAttn
from tqdm import tqdm
from accelerate import Accelerator
import glob
import numpy as np
from tqdm import tqdm
import gc
import matplotlib.pyplot as plt
import os
from matplotlib.colors import LinearSegmentedColormap
import seaborn as sns
import pandas as pd
from pathlib import Path
import random
import json
from datasets import load_dataset
from vision_niah.produce_needle_embedding import read_json_file
from easy_context import (
prepare_seq_parallel_inputs,
apply_seq_parallel_monkey_patch,
)
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from torchvision import io, transforms
from torchvision.transforms import InterpolationMode
apply_seq_parallel_monkey_patch("zigzag_ring_attn", "llama")
import sys
import pdb
class ForkedPdb(pdb.Pdb):
"""A Pdb subclass that may be used
from a forked multiprocessing child
"""
def interaction(self, *args, **kwargs):
_stdin = sys.stdin
try:
sys.stdin = open('/dev/stdin')
pdb.Pdb.interaction(self, *args, **kwargs)
finally:
sys.stdin = _stdin
SEED = 24242424
torch.manual_seed(SEED)
random.seed(SEED)
np.random.seed(SEED)
IMAGE_TOKENS = None
prompt_templates = {
"mistral": {
"preprompt": "<s>[INST]",
"postprompt": " [/INST]"
},
"vicuna": {
"preprompt": "<s>A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions. USER:",
"postprompt": "ASSISTANT:"
},
"llama3": {
"preprompt": "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\nYou are a helpful language and vision assistant. You are able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language.<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n",
"postprompt": "<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n",
},
"qwen2": {
"preprompt": "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n",
"postprompt": "<|im_end|>\n<|im_start|>assistant\n",
},
"yi": {
"preprompt": "<|im_start|>system\nAnswer the questions.<|im_end|>\n<|im_start|>user\n",
"postprompt": "<|im_end|>\n<|im_start|>assistant\n",
},
}
# \nAnswer the question using a single word or phrase.
# The color of the bottle cap is
# answer = "Yellow"
def safe_tokenize(tokenizer, text):
tokenized = tokenizer.encode(text, return_tensors="pt")
if tokenizer.bos_token != None and len(tokenized) > 0 and tokenized[0, 0] == tokenizer.bos_token_id:
tokenized = tokenized[:, 1:]
return tokenized
def get_vanilla_rope_index(input_embeds, video_se):
return torch.arange(input_embeds.shape[1]).view(1, 1, -1).expand(3, 1, -1)
def get_time_rope_index(input_embeds, video_se):
llm_pos_ids_list = []
llm_pos_ids_list.append(torch.arange(video_se[0]).view(1, 1, -1).expand(3, 1, -1))
assert (video_se[1] - video_se[0]) % IMAGE_TOKENS == 0, 'frames should not be float'
nframes = (video_se[1] - video_se[0]) // IMAGE_TOKENS
## time rope
t_index = torch.arange(llm_pos_ids_list[-1].max().item() + 1, llm_pos_ids_list[-1].max().item() + 1 + nframes).repeat_interleave(IMAGE_TOKENS, dim=0).view(1, 1, -1).expand(3, 1, -1)
llm_pos_ids_list.append(t_index)
if input_embeds.shape[1] > video_se[1]:
text_len = input_embeds.shape[1] - video_se[1]
llm_pos_ids_list.append(torch.arange(t_index.max().item() + 1, text_len + t_index.max().item() + 1).view(1, 1, -1).expand(3, 1, -1))
position_ids = torch.cat(llm_pos_ids_list, dim=-1)
assert position_ids.shape[-1] == input_embeds.shape[1], f'shape mismatch! {position_ids.shape[-1]=}, {input_embeds.shape[1]=}'
return position_ids
def get_t_scale2_rope_index(input_embeds, video_se, scale_factor):
llm_pos_ids_list = []
llm_pos_ids_list.append(torch.arange(video_se[0]).view(1, 1, -1).expand(3, 1, -1))
st_idx = llm_pos_ids_list[-1][0].max() + 1 if len(llm_pos_ids_list) > 0 else 0
assert (video_se[1] - video_se[0]) % IMAGE_TOKENS == 0, 'frames should not be float'
nframes = (video_se[1] - video_se[0]) // IMAGE_TOKENS
## m_rope rope
llm_grid_t, llm_grid_h, llm_grid_w = nframes, 9, 16
t_index = torch.arange(llm_grid_t).view(-1, 1).expand(
-1, llm_grid_h * llm_grid_w).flatten()
h_index = torch.arange(llm_grid_h).view(1, -1, 1).expand(
llm_grid_t, -1, llm_grid_w).flatten() - (llm_grid_h-1) // 2
w_index = torch.arange(llm_grid_w).view(1, 1, -1).expand(
llm_grid_t, llm_grid_h, -1).flatten() - (llm_grid_w-1) // 2
t_index = t_index * scale_factor
t_index = t_index + st_idx
h_index = h_index + t_index
w_index = w_index + t_index
llm_pos_ids_list.append(
torch.stack([t_index, h_index, w_index]).unsqueeze(dim=1))
if input_embeds.shape[1] > video_se[1]:
text_len = input_embeds.shape[1] - video_se[1]
# print(text_len)
llm_pos_ids_list.append(torch.arange(llm_pos_ids_list[-1][0].max().item() + 1, llm_pos_ids_list[-1][0].max().item() + 1 + text_len).view(1, 1, -1).expand(3, 1, -1))
# print(llm_pos_ids_list[0].shape, llm_pos_ids_list[1].shape, llm_pos_ids_list[2].shape)
position_ids = torch.cat(llm_pos_ids_list, dim=-1)
assert position_ids.shape[-1] == input_embeds.shape[1], f'shape mismatch! {position_ids.shape[-1]=}, {input_embeds.shape[1]=}'
return position_ids
def get_m_rope_index(input_embeds, video_se):
llm_pos_ids_list = []
llm_pos_ids_list.append(torch.arange(video_se[0]).view(1, 1, -1).expand(3, 1, -1))
st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
assert (video_se[1] - video_se[0]) % IMAGE_TOKENS == 0, 'frames should not be float'
nframes = (video_se[1] - video_se[0]) // IMAGE_TOKENS
## m_rope rope
llm_grid_t, llm_grid_h, llm_grid_w = nframes, 9, 16
t_index = torch.arange(nframes).view(-1, 1).expand(-1, llm_grid_h * llm_grid_w).flatten()
h_index = torch.arange(llm_grid_h).view(1, -1, 1).expand(llm_grid_t, -1, llm_grid_w).flatten()
w_index = torch.arange(llm_grid_w).view(1, 1, -1).expand(llm_grid_t, llm_grid_h, -1).flatten()
llm_pos_ids_list.append(torch.stack([t_index, h_index, w_index]).unsqueeze(dim=1) + st_idx)
if input_embeds.shape[1] > video_se[1]:
text_len = input_embeds.shape[1] - video_se[1]
llm_pos_ids_list.append(torch.arange(llm_pos_ids_list[-1].max().item() + 1, llm_pos_ids_list[-1].max().item() + 1 + text_len).view(1, 1, -1).expand(3, 1, -1))
position_ids = torch.cat(llm_pos_ids_list, dim=-1)
assert position_ids.shape[-1] == input_embeds.shape[1], f'shape mismatch! {position_ids.shape[-1]=}, {input_embeds.shape[1]=}'
return position_ids
def get_m_modify_margin_index(input_embeds, video_se):
llm_pos_ids_list = []
llm_pos_ids_list.append(torch.arange(video_se[0]).view(1, 1, -1).expand(3, 1, -1))
st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
assert (video_se[1] - video_se[0]) % IMAGE_TOKENS == 0, 'frames should not be float'
nframes = (video_se[1] - video_se[0]) // IMAGE_TOKENS
## m_rope rope
llm_grid_t, llm_grid_h, llm_grid_w = nframes, 9, 16
t_index = torch.arange(llm_grid_t).view(-1, 1).expand(
-1, llm_grid_h * llm_grid_w).flatten()
h_index = torch.arange(llm_grid_h).view(1, -1, 1).expand(
llm_grid_t, -1, llm_grid_w).flatten() - (llm_grid_h-1) // 2
w_index = torch.arange(llm_grid_w).view(1, 1, -1).expand(
llm_grid_t, llm_grid_h, -1).flatten() - (llm_grid_w-1) // 2
t_index = t_index + st_idx
h_index = h_index + t_index
w_index = w_index + t_index
llm_pos_ids_list.append(
torch.stack([t_index, h_index, w_index]).unsqueeze(dim=1))
if input_embeds.shape[1] > video_se[1]:
text_len = input_embeds.shape[1] - video_se[1]
# print(text_len)
llm_pos_ids_list.append(torch.arange(llm_pos_ids_list[-1].max().item() + 1, llm_pos_ids_list[-1].max().item() + 1 + text_len).view(1, 1, -1).expand(3, 1, -1))
# print(llm_pos_ids_list[0].shape, llm_pos_ids_list[1].shape, llm_pos_ids_list[2].shape)
position_ids = torch.cat(llm_pos_ids_list, dim=-1)
assert position_ids.shape[-1] == input_embeds.shape[1], f'shape mismatch! {position_ids.shape[-1]=}, {input_embeds.shape[1]=}'
return position_ids
def get_m_modify_no_center_index(input_embeds, video_se):
llm_pos_ids_list = []
llm_pos_ids_list.append(torch.arange(video_se[0]).view(1, 1, -1).expand(3, 1, -1))
st_idx = llm_pos_ids_list[-1][0].max() + 1 if len(llm_pos_ids_list) > 0 else 0
assert (video_se[1] - video_se[0]) % IMAGE_TOKENS == 0, 'frames should not be float'
nframes = (video_se[1] - video_se[0]) // IMAGE_TOKENS
## m_rope rope
llm_grid_t, llm_grid_h, llm_grid_w = nframes, 9, 16
t_index = torch.arange(llm_grid_t).view(-1, 1).expand(
-1, llm_grid_h * llm_grid_w).flatten()
h_index = torch.arange(llm_grid_h).view(1, -1, 1).expand(
llm_grid_t, -1, llm_grid_w).flatten()
w_index = torch.arange(llm_grid_w).view(1, 1, -1).expand(
llm_grid_t, llm_grid_h, -1).flatten()
llm_pos_ids_list.append(
torch.stack([t_index, h_index, w_index]).unsqueeze(dim=1) + st_idx)
if input_embeds.shape[1] > video_se[1]:
text_len = input_embeds.shape[1] - video_se[1]
# print(text_len)
llm_pos_ids_list.append(torch.arange(llm_pos_ids_list[-1][0].max().item() + 1, llm_pos_ids_list[-1][0].max().item() + 1 + text_len).view(1, 1, -1).expand(3, 1, -1))
# print(llm_pos_ids_list[0].shape, llm_pos_ids_list[1].shape, llm_pos_ids_list[2].shape)
position_ids = torch.cat(llm_pos_ids_list, dim=-1)
assert position_ids.shape[-1] == input_embeds.shape[1], f'shape mismatch! {position_ids.shape[-1]=}, {input_embeds.shape[1]=}'
return position_ids
def get_m_modify_index(input_embeds, video_se):
llm_pos_ids_list = []
llm_pos_ids_list.append(torch.arange(video_se[0]).view(1, 1, -1).expand(3, 1, -1))
st_idx = llm_pos_ids_list[-1][0].max() + 1 if len(llm_pos_ids_list) > 0 else 0
assert (video_se[1] - video_se[0]) % IMAGE_TOKENS == 0, 'frames should not be float'
nframes = (video_se[1] - video_se[0]) // IMAGE_TOKENS
## m_rope rope
llm_grid_t, llm_grid_h, llm_grid_w = nframes, 9, 16
t_index = torch.arange(llm_grid_t).view(-1, 1).expand(
-1, llm_grid_h * llm_grid_w).flatten()
h_index = torch.arange(llm_grid_h).view(1, -1, 1).expand(
llm_grid_t, -1, llm_grid_w).flatten() - (llm_grid_h-1) // 2
w_index = torch.arange(llm_grid_w).view(1, 1, -1).expand(
llm_grid_t, llm_grid_h, -1).flatten() - (llm_grid_w-1) // 2
t_index = t_index + st_idx
h_index = h_index + t_index
w_index = w_index + t_index
llm_pos_ids_list.append(
torch.stack([t_index, h_index, w_index]).unsqueeze(dim=1))
if input_embeds.shape[1] > video_se[1]:
text_len = input_embeds.shape[1] - video_se[1]
# print(text_len)
llm_pos_ids_list.append(torch.arange(llm_pos_ids_list[-1][0].max().item() + 1, llm_pos_ids_list[-1][0].max().item() + 1 + text_len).view(1, 1, -1).expand(3, 1, -1))
# print(llm_pos_ids_list[0].shape, llm_pos_ids_list[1].shape, llm_pos_ids_list[2].shape)
position_ids = torch.cat(llm_pos_ids_list, dim=-1)
assert position_ids.shape[-1] == input_embeds.shape[1], f'shape mismatch! {position_ids.shape[-1]=}, {input_embeds.shape[1]=}'
return position_ids
def get_position_ids(input_embeds, rope_type, video_se):
if rope_type == 'vanilla_rope':
return get_vanilla_rope_index(input_embeds, video_se)
elif rope_type == 'tad_rope':
return get_time_rope_index(input_embeds, video_se) + get_vanilla_rope_index(input_embeds, video_se)
elif rope_type == 'm_rope':
return get_m_rope_index(input_embeds, video_se)
elif rope_type == 'videorope':
scale_factor = 2.0
return get_t_scale2_rope_index(input_embeds, video_se, scale_factor)
else:
raise ValueError(f"not this rope: {rope_type}")
# answer = "more bet"
def eval_forward(args, video_se, accelerator, model, input_embeds, answer_embeds, pad_id, answer_ids, tokenizer):
# first append answer_embeds to input_embeds
prompt_length = input_embeds.shape[1]
labels_length = answer_embeds.shape[1]
input_embeds = torch.cat([input_embeds, answer_embeds], dim=1)
# second pad input_embeds to the multiple of accelerator.num_processes
pad_tensor = torch.tensor(
[pad_id]
* (
(accelerator.num_processes * 2)
- input_embeds.shape[1] % (accelerator.num_processes * 2)
)
).unsqueeze(0).unsqueeze(-1).expand(-1, -1, input_embeds.shape[-1]).to(accelerator.device)
input_embeds = torch.cat([input_embeds, pad_tensor], dim=1)
# position_ids = (
# torch.arange(input_embeds.shape[1]).unsqueeze(0).expand(input_embeds.shape[0], -1)
# ).to(accelerator.device)
position_ids = get_position_ids(input_embeds, args.rope_type, video_se)
# ForkedPdb().set_trace()
accelerator.print(input_embeds.shape)
prepared = prepare_seq_parallel_inputs(
"zigzag_ring_attn",
input_embeds,
position_ids,
None,
accelerator.process_index,
accelerator.num_processes,
accelerator.device,
)
local_input_embeds = prepared["local_input_ids"]
local_position_ids = prepared["local_position_ids"]
if 'm_modify' in args.rope_type or 't_only' in args.rope_type or 'change_freq' in args.rope_type:
from transformers.models.qwen2_vl import modeling_qwen2_vl
modeling_qwen2_vl.apply_multimodal_rotary_pos_emb = modeling_qwen2_vl.apply_m_modify_multimodal_rotary_pos_emb
with torch.inference_mode():
hidden_states = model.model(
inputs_embeds=local_input_embeds,
position_ids=local_position_ids,
use_cache=False,
)[0]
logits = model.lm_head(hidden_states)
logits = logits.float()
pred = logits.argmax(dim=-1)
# gather all logits using accelerator.gather
def undo_extract_local(gathered_value, world_size, dim=1):
value_chunks = gathered_value.chunk(2 * world_size, dim=dim)
reordered_chunks = [None] * (2 * world_size)
for i in range(world_size):
reordered_chunks[i] = value_chunks[i * 2]
reordered_chunks[2 * world_size - i - 1] = value_chunks[i * 2 + 1]
return torch.cat(reordered_chunks, dim=dim)
correct = False
gathered_logits = accelerator.gather(pred.squeeze(0)).unsqueeze(0)
# undo extract local on the gathered logits
# ForkedPdb().set_trace()
pred = undo_extract_local(gathered_logits, accelerator.num_processes)
pred = pred[:, prompt_length - 1 : prompt_length + labels_length - 1]
# check if the logits are correct, extract argmax id
# compare the predicted_ids with the labels
correct = (pred == answer_ids.to(accelerator.device)).all()
if accelerator.is_main_process:
print(
"Predicted: ",
tokenizer.decode(pred.squeeze().tolist()),
"Answer: ",
tokenizer.decode(answer_ids.squeeze().tolist()),
)
# print id as well
print(
"Predicted: ",
pred.squeeze().tolist(),
"Answer: ",
answer_ids.squeeze().tolist(),
)
return int(correct)
def load_haystack(args, accelerator):
haystack_embeddings = torch.load(f"{args.haystack_dir}/video_embeddings.pt").to(torch.bfloat16)
return haystack_embeddings
def load_text_embeddings(str, tokenizer, model, accelerator, replace_double_newline=False):
token_ids = safe_tokenize(tokenizer, str)
def replace_double_newline_func(token_ids):
# subsitute token id 271 to two 198]
# for example:
# from: tensor([[128000, 128006, 9125, 128007, 271, 2675, 527, 264, 11190, 4221, 323, 11376, 18328, 13]])
# to: tensor([[128000, 128006, 9125, 128007, 198, 198, 2675, 527, 264, 11190, 4221, 323, 11376, 18328, 13]])
# length will increase by number of 271
double_newline_loc = (token_ids == 271).nonzero()[:, 1]
double_newline_loc += torch.arange(len(double_newline_loc))
if len(double_newline_loc) > 0:
for loc in double_newline_loc:
token_ids = torch.cat([token_ids[:, :loc], torch.tensor([[198, 198]]), token_ids[:, loc+1:]], dim=1)
return token_ids
if replace_double_newline:
token_ids = replace_double_newline_func(token_ids)
token_ids = token_ids.to(accelerator.device)
with torch.inference_mode():
embeddings = model.model.embed_tokens(token_ids)
return embeddings.to(torch.bfloat16)
def inference(args):
accelerator = Accelerator(
mixed_precision="bf16",
)
model_path = args.model
model = Qwen2VLForConditionalGeneration.from_pretrained(model_path,
device_map=accelerator.device,
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2"
)
del model.visual
processor = AutoProcessor.from_pretrained("/mnt/hwfile/mllm/weixilin/cache/Qwen2-VL-7B-Instruct")
tokenizer = processor.tokenizer
kwargs = {"rope_theta": args.rope_theta} if args.rope_theta is not None else {}
tokenizer.pad_token = tokenizer.eos_token
# remember to remove <s>
accelerator.print("Preparing Haystack...")
haystack_embeddings = load_haystack(args, accelerator)
target_length = args.max_frame_num * IMAGE_TOKENS
# ForkedPdb().set_trace()
if len(haystack_embeddings) < target_length:
repeat_times = (target_length + len(haystack_embeddings) - 1) // len(haystack_embeddings) # 向上取整计算需要重复的次数
haystack_embeddings = torch.cat([haystack_embeddings] * repeat_times, dim=0)[:target_length]
assert len(haystack_embeddings) >= args.max_frame_num * IMAGE_TOKENS, "Haystack embeddings are not enough. Max frame {} is not found. Currently only {} frames.".format(args.max_frame_num, len(haystack_embeddings))
# import pdb; pdb.set_trace()
haystack_embeddings = haystack_embeddings[:args.max_frame_num * IMAGE_TOKENS].to(accelerator.device)
prompt = prompt_templates[args.prompt_template]
preprompt_embeddings = load_text_embeddings(prompt["preprompt"], tokenizer, model, accelerator, args.replace_double_newline)
postprompt_embeddings = load_text_embeddings(prompt["postprompt"], tokenizer, model, accelerator, args.replace_double_newline)
needle_dataset = read_json_file(args.needle_dataset)
answer_embedding_list = []
answer_id_list = []
needle_embedding_list = []
question_embeding_list = []
for index, instance in enumerate(needle_dataset):
answer = instance["answer"]
question = instance["prompt"]
needle_embedding_list.append(torch.load(args.needle_embedding_dir + f"/{index}.pt", map_location="cpu").to(torch.bfloat16).to(accelerator.device))
answer_embedding_list.append(load_text_embeddings(answer, tokenizer, model, accelerator))
answer_id_list.append(safe_tokenize(tokenizer, answer))
question_embeding_list.append(load_text_embeddings(question, tokenizer, model, accelerator))
accelerator.print("Starting Evaluation...")
model = accelerator.prepare(model)
model.gradient_checkpointing_enable()
all_accuries = []
for num_frames in tqdm(
range(
args.min_frame_num, args.max_frame_num + 1, args.frame_interval
)
):
for depth in np.arange(0, 1 + args.depth_interval, args.depth_interval):
accuracies = []
for question_embedding, needle_embedding, answer_embedding, answer_id in zip(question_embeding_list, needle_embedding_list, answer_embedding_list, answer_id_list):
query_frame_idx = int(depth * num_frames)
# import pdb; pdb.set_trace()
input_frames = torch.cat([haystack_embeddings[:query_frame_idx * IMAGE_TOKENS].to(accelerator.device),needle_embedding.to(accelerator.device), haystack_embeddings[query_frame_idx*IMAGE_TOKENS:num_frames*IMAGE_TOKENS].to(accelerator.device)], dim=0).view(-1, haystack_embeddings.shape[-1]).unsqueeze(0)
input_emebds = torch.cat([preprompt_embeddings.to(accelerator.device), input_frames.to(accelerator.device),question_embedding.to(accelerator.device), postprompt_embeddings.to(accelerator.device)], dim=1)
video_se = (preprompt_embeddings.shape[1], preprompt_embeddings.shape[1] + input_frames.shape[1])
correct = eval_forward(
args, video_se, accelerator, model, input_emebds, answer_embedding, tokenizer.pad_token_id, answer_id, tokenizer
)
gc.collect()
torch.cuda.empty_cache()
if accelerator.is_main_process:
accuracies.append(correct)
if accelerator.is_main_process:
result = {
"Num. Frame": num_frames,
"Frame Depth": round(depth * 100, -1),
"Score": sum(accuracies) / len(accuracies),
}
accelerator.print(result)
all_accuries.append(result)
if accelerator.is_main_process:
model_name = args.model.split("/")[-1]
os.makedirs(f"{args.output_path}/{model_name}", exist_ok=True)
# save all_accuries as json
with open(f"{args.output_path}/{model_name}/all_accuracies.json", "w") as f:
json.dump(all_accuries, f, indent=4)
return all_accuries, accelerator
def plot(args, all_accuries):
df = pd.DataFrame(all_accuries)
cmap = LinearSegmentedColormap.from_list(
"custom_cmap", ["#F0496E", "#EBB839", "#9ad5b3"]
)
pivot_table = pd.pivot_table(
df,
values="Score",
index=["Frame Depth", "Num. Frame"],
aggfunc="mean",
).reset_index() # This will aggregate
pivot_table = pivot_table.pivot(
index="Frame Depth", columns="Num. Frame", values="Score"
)
# Create the heatmap with better aesthetics
plt.figure(figsize=(17.5, 8)) # Can adjust these dimensions as needed
ax = sns.heatmap(
pivot_table,
# annot=True,
fmt="g",
vmin=0,
vmax=1,
linecolor='white',
linewidths=1.5,
cmap=cmap,
cbar_kws={"label": "Score"},
)
# Set the color bar label font size
cbar = ax.collections[0].colorbar
cbar.ax.yaxis.label.set_size(14)
cbar.ax.tick_params(labelsize=14)
# Define the formatter function
def thousands_formatter(x, pos):
if x >= 1000:
return f'{x/1000:.1f}K'
return f'{x}'
context_lengths = pivot_table.columns
formatted_context_lengths = [thousands_formatter(x, None) for x in context_lengths]
# More aesthetics
plt.xlabel("Num. of Frames", fontsize=14) # X-axis label
plt.ylabel("Depth Percent", fontsize=14) # Y-axis label
plt.xticks(ticks=[i + 0.5 for i in range(len(context_lengths))], labels=formatted_context_lengths, rotation=45, fontsize=14)
# plt.xticks(rotation=45, fontsize=14) # Rotates the x-axis labels to prevent overlap
plt.yticks(rotation=0, fontsize=14) # Ensures the y-axis labels are horizontal
plt.tight_layout() # Fits everything neatly into the figure area
# save
model_name = args.model.split("/")[-1]
plt.savefig(f"{args.output_path}/{model_name}/heatmap.png")
# calculate average accuracy
average_accuracy = df["Score"].mean()
print(f"Average Accuracy: {average_accuracy}")
# save as txt
with open(f"{args.output_path}/{model_name}/avg_accuracy.txt", "w") as f:
f.write(f"Average Accuracy: {average_accuracy}\n")
def main(args):
if args.plot_only:
# load all_accuracies from json
model_name = args.model.split("/")[-1]
with open(f"{args.output_path}/{model_name}/all_accuracies.json", "r") as f:
all_accuracies = json.load(f)
plot(args, all_accuracies)
else:
all_accuracies, accelerator = inference(args)
if accelerator.is_main_process:
plot(args, all_accuracies)
if __name__ == "__main__":
args = argparse.ArgumentParser()
args.add_argument("--model", type=str, default="/mnt/hwfile/mllm/weixilin/cache/Qwen2-VL-7B-Instruct")
args.add_argument("--max_frame_num", type=int, default=1500)
args.add_argument("--needle_dataset", type=str, default="/mnt/petrelfs/weixilin/projects/MLLM/Qwen2-VL/vision_niah/needle_datasets/dataset.json")
args.add_argument("--min_frame_num", type=int, default=400)
args.add_argument("--frame_interval", type=int, default=100)
args.add_argument("--output_path", type=str, default="/mnt/petrelfs/weixilin/projects/MLLM/Qwen2-VL/vision_niah/niah_output")
args.add_argument("--depth_interval", type=float, default=0.1)
args.add_argument("--num_samples", type=int, default=1)
args.add_argument("--rope_theta", type=float, default=None)
args.add_argument("--haystack_dir", type=str, default="your haystack_dir")
args.add_argument("--needle_embedding_dir", type=str, default="/mnt/petrelfs/weixilin/projects/MLLM/Qwen2-VL/vision_niah/video_needle_haystack/data/needle_vicuna_embeddings")
args.add_argument("--prompt_template", type=str, default='qwen2')
args.add_argument("--image_tokens", type=int, default=144)
args.add_argument("--rope_type", type=str, default=None)
args.add_argument("--replace_double_newline", action="store_true")
args.add_argument("--plot_only", action="store_true")
args = args.parse_args()
IMAGE_TOKENS = args.image_tokens
main(args)