|
import argparse |
|
import gc |
|
import sys |
|
import torch |
|
from transformers import AutoTokenizer |
|
from transformers import LlamaForCausalLM |
|
from easy_context import Qwen2ForCausalLM_RingAttn |
|
from tqdm import tqdm |
|
from accelerate import Accelerator |
|
import glob |
|
import numpy as np |
|
from tqdm import tqdm |
|
import gc |
|
import matplotlib.pyplot as plt |
|
import os |
|
from matplotlib.colors import LinearSegmentedColormap |
|
import seaborn as sns |
|
import pandas as pd |
|
from pathlib import Path |
|
import random |
|
import json |
|
from datasets import load_dataset |
|
from vision_niah.produce_needle_embedding import read_json_file |
|
from easy_context import ( |
|
prepare_seq_parallel_inputs, |
|
apply_seq_parallel_monkey_patch, |
|
) |
|
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor |
|
from torchvision import io, transforms |
|
from torchvision.transforms import InterpolationMode |
|
apply_seq_parallel_monkey_patch("zigzag_ring_attn", "llama") |
|
|
|
import sys |
|
import pdb |
|
class ForkedPdb(pdb.Pdb): |
|
"""A Pdb subclass that may be used |
|
from a forked multiprocessing child |
|
""" |
|
def interaction(self, *args, **kwargs): |
|
_stdin = sys.stdin |
|
try: |
|
sys.stdin = open('/dev/stdin') |
|
pdb.Pdb.interaction(self, *args, **kwargs) |
|
finally: |
|
sys.stdin = _stdin |
|
|
|
SEED = 24242424 |
|
torch.manual_seed(SEED) |
|
random.seed(SEED) |
|
np.random.seed(SEED) |
|
IMAGE_TOKENS = None |
|
prompt_templates = { |
|
"mistral": { |
|
"preprompt": "<s>[INST]", |
|
"postprompt": " [/INST]" |
|
}, |
|
"vicuna": { |
|
"preprompt": "<s>A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions. USER:", |
|
"postprompt": "ASSISTANT:" |
|
}, |
|
"llama3": { |
|
"preprompt": "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\nYou are a helpful language and vision assistant. You are able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language.<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n", |
|
"postprompt": "<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n", |
|
}, |
|
"qwen2": { |
|
"preprompt": "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n", |
|
"postprompt": "<|im_end|>\n<|im_start|>assistant\n", |
|
}, |
|
"yi": { |
|
"preprompt": "<|im_start|>system\nAnswer the questions.<|im_end|>\n<|im_start|>user\n", |
|
"postprompt": "<|im_end|>\n<|im_start|>assistant\n", |
|
}, |
|
} |
|
|
|
|
|
|
|
|
|
|
|
def safe_tokenize(tokenizer, text): |
|
tokenized = tokenizer.encode(text, return_tensors="pt") |
|
if tokenizer.bos_token != None and len(tokenized) > 0 and tokenized[0, 0] == tokenizer.bos_token_id: |
|
tokenized = tokenized[:, 1:] |
|
return tokenized |
|
|
|
def get_vanilla_rope_index(input_embeds, video_se): |
|
return torch.arange(input_embeds.shape[1]).view(1, 1, -1).expand(3, 1, -1) |
|
|
|
def get_time_rope_index(input_embeds, video_se): |
|
llm_pos_ids_list = [] |
|
llm_pos_ids_list.append(torch.arange(video_se[0]).view(1, 1, -1).expand(3, 1, -1)) |
|
assert (video_se[1] - video_se[0]) % IMAGE_TOKENS == 0, 'frames should not be float' |
|
nframes = (video_se[1] - video_se[0]) // IMAGE_TOKENS |
|
|
|
t_index = torch.arange(llm_pos_ids_list[-1].max().item() + 1, llm_pos_ids_list[-1].max().item() + 1 + nframes).repeat_interleave(IMAGE_TOKENS, dim=0).view(1, 1, -1).expand(3, 1, -1) |
|
llm_pos_ids_list.append(t_index) |
|
if input_embeds.shape[1] > video_se[1]: |
|
text_len = input_embeds.shape[1] - video_se[1] |
|
llm_pos_ids_list.append(torch.arange(t_index.max().item() + 1, text_len + t_index.max().item() + 1).view(1, 1, -1).expand(3, 1, -1)) |
|
position_ids = torch.cat(llm_pos_ids_list, dim=-1) |
|
assert position_ids.shape[-1] == input_embeds.shape[1], f'shape mismatch! {position_ids.shape[-1]=}, {input_embeds.shape[1]=}' |
|
return position_ids |
|
|
|
def get_t_scale2_rope_index(input_embeds, video_se, scale_factor): |
|
llm_pos_ids_list = [] |
|
llm_pos_ids_list.append(torch.arange(video_se[0]).view(1, 1, -1).expand(3, 1, -1)) |
|
st_idx = llm_pos_ids_list[-1][0].max() + 1 if len(llm_pos_ids_list) > 0 else 0 |
|
assert (video_se[1] - video_se[0]) % IMAGE_TOKENS == 0, 'frames should not be float' |
|
nframes = (video_se[1] - video_se[0]) // IMAGE_TOKENS |
|
|
|
llm_grid_t, llm_grid_h, llm_grid_w = nframes, 9, 16 |
|
|
|
t_index = torch.arange(llm_grid_t).view(-1, 1).expand( |
|
-1, llm_grid_h * llm_grid_w).flatten() |
|
h_index = torch.arange(llm_grid_h).view(1, -1, 1).expand( |
|
llm_grid_t, -1, llm_grid_w).flatten() - (llm_grid_h-1) // 2 |
|
w_index = torch.arange(llm_grid_w).view(1, 1, -1).expand( |
|
llm_grid_t, llm_grid_h, -1).flatten() - (llm_grid_w-1) // 2 |
|
t_index = t_index * scale_factor |
|
t_index = t_index + st_idx |
|
h_index = h_index + t_index |
|
w_index = w_index + t_index |
|
|
|
llm_pos_ids_list.append( |
|
torch.stack([t_index, h_index, w_index]).unsqueeze(dim=1)) |
|
|
|
if input_embeds.shape[1] > video_se[1]: |
|
text_len = input_embeds.shape[1] - video_se[1] |
|
|
|
|
|
llm_pos_ids_list.append(torch.arange(llm_pos_ids_list[-1][0].max().item() + 1, llm_pos_ids_list[-1][0].max().item() + 1 + text_len).view(1, 1, -1).expand(3, 1, -1)) |
|
|
|
position_ids = torch.cat(llm_pos_ids_list, dim=-1) |
|
assert position_ids.shape[-1] == input_embeds.shape[1], f'shape mismatch! {position_ids.shape[-1]=}, {input_embeds.shape[1]=}' |
|
return position_ids |
|
|
|
def get_m_rope_index(input_embeds, video_se): |
|
llm_pos_ids_list = [] |
|
llm_pos_ids_list.append(torch.arange(video_se[0]).view(1, 1, -1).expand(3, 1, -1)) |
|
st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0 |
|
assert (video_se[1] - video_se[0]) % IMAGE_TOKENS == 0, 'frames should not be float' |
|
nframes = (video_se[1] - video_se[0]) // IMAGE_TOKENS |
|
|
|
llm_grid_t, llm_grid_h, llm_grid_w = nframes, 9, 16 |
|
t_index = torch.arange(nframes).view(-1, 1).expand(-1, llm_grid_h * llm_grid_w).flatten() |
|
h_index = torch.arange(llm_grid_h).view(1, -1, 1).expand(llm_grid_t, -1, llm_grid_w).flatten() |
|
w_index = torch.arange(llm_grid_w).view(1, 1, -1).expand(llm_grid_t, llm_grid_h, -1).flatten() |
|
llm_pos_ids_list.append(torch.stack([t_index, h_index, w_index]).unsqueeze(dim=1) + st_idx) |
|
if input_embeds.shape[1] > video_se[1]: |
|
text_len = input_embeds.shape[1] - video_se[1] |
|
llm_pos_ids_list.append(torch.arange(llm_pos_ids_list[-1].max().item() + 1, llm_pos_ids_list[-1].max().item() + 1 + text_len).view(1, 1, -1).expand(3, 1, -1)) |
|
position_ids = torch.cat(llm_pos_ids_list, dim=-1) |
|
assert position_ids.shape[-1] == input_embeds.shape[1], f'shape mismatch! {position_ids.shape[-1]=}, {input_embeds.shape[1]=}' |
|
return position_ids |
|
|
|
def get_m_modify_margin_index(input_embeds, video_se): |
|
llm_pos_ids_list = [] |
|
llm_pos_ids_list.append(torch.arange(video_se[0]).view(1, 1, -1).expand(3, 1, -1)) |
|
st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0 |
|
assert (video_se[1] - video_se[0]) % IMAGE_TOKENS == 0, 'frames should not be float' |
|
nframes = (video_se[1] - video_se[0]) // IMAGE_TOKENS |
|
|
|
llm_grid_t, llm_grid_h, llm_grid_w = nframes, 9, 16 |
|
|
|
t_index = torch.arange(llm_grid_t).view(-1, 1).expand( |
|
-1, llm_grid_h * llm_grid_w).flatten() |
|
h_index = torch.arange(llm_grid_h).view(1, -1, 1).expand( |
|
llm_grid_t, -1, llm_grid_w).flatten() - (llm_grid_h-1) // 2 |
|
w_index = torch.arange(llm_grid_w).view(1, 1, -1).expand( |
|
llm_grid_t, llm_grid_h, -1).flatten() - (llm_grid_w-1) // 2 |
|
t_index = t_index + st_idx |
|
h_index = h_index + t_index |
|
w_index = w_index + t_index |
|
|
|
llm_pos_ids_list.append( |
|
torch.stack([t_index, h_index, w_index]).unsqueeze(dim=1)) |
|
|
|
if input_embeds.shape[1] > video_se[1]: |
|
text_len = input_embeds.shape[1] - video_se[1] |
|
|
|
|
|
llm_pos_ids_list.append(torch.arange(llm_pos_ids_list[-1].max().item() + 1, llm_pos_ids_list[-1].max().item() + 1 + text_len).view(1, 1, -1).expand(3, 1, -1)) |
|
|
|
position_ids = torch.cat(llm_pos_ids_list, dim=-1) |
|
assert position_ids.shape[-1] == input_embeds.shape[1], f'shape mismatch! {position_ids.shape[-1]=}, {input_embeds.shape[1]=}' |
|
return position_ids |
|
|
|
def get_m_modify_no_center_index(input_embeds, video_se): |
|
llm_pos_ids_list = [] |
|
llm_pos_ids_list.append(torch.arange(video_se[0]).view(1, 1, -1).expand(3, 1, -1)) |
|
st_idx = llm_pos_ids_list[-1][0].max() + 1 if len(llm_pos_ids_list) > 0 else 0 |
|
assert (video_se[1] - video_se[0]) % IMAGE_TOKENS == 0, 'frames should not be float' |
|
nframes = (video_se[1] - video_se[0]) // IMAGE_TOKENS |
|
|
|
llm_grid_t, llm_grid_h, llm_grid_w = nframes, 9, 16 |
|
|
|
t_index = torch.arange(llm_grid_t).view(-1, 1).expand( |
|
-1, llm_grid_h * llm_grid_w).flatten() |
|
h_index = torch.arange(llm_grid_h).view(1, -1, 1).expand( |
|
llm_grid_t, -1, llm_grid_w).flatten() |
|
w_index = torch.arange(llm_grid_w).view(1, 1, -1).expand( |
|
llm_grid_t, llm_grid_h, -1).flatten() |
|
|
|
llm_pos_ids_list.append( |
|
torch.stack([t_index, h_index, w_index]).unsqueeze(dim=1) + st_idx) |
|
|
|
if input_embeds.shape[1] > video_se[1]: |
|
text_len = input_embeds.shape[1] - video_se[1] |
|
|
|
|
|
llm_pos_ids_list.append(torch.arange(llm_pos_ids_list[-1][0].max().item() + 1, llm_pos_ids_list[-1][0].max().item() + 1 + text_len).view(1, 1, -1).expand(3, 1, -1)) |
|
|
|
position_ids = torch.cat(llm_pos_ids_list, dim=-1) |
|
assert position_ids.shape[-1] == input_embeds.shape[1], f'shape mismatch! {position_ids.shape[-1]=}, {input_embeds.shape[1]=}' |
|
return position_ids |
|
|
|
def get_m_modify_index(input_embeds, video_se): |
|
llm_pos_ids_list = [] |
|
llm_pos_ids_list.append(torch.arange(video_se[0]).view(1, 1, -1).expand(3, 1, -1)) |
|
st_idx = llm_pos_ids_list[-1][0].max() + 1 if len(llm_pos_ids_list) > 0 else 0 |
|
assert (video_se[1] - video_se[0]) % IMAGE_TOKENS == 0, 'frames should not be float' |
|
nframes = (video_se[1] - video_se[0]) // IMAGE_TOKENS |
|
|
|
llm_grid_t, llm_grid_h, llm_grid_w = nframes, 9, 16 |
|
|
|
t_index = torch.arange(llm_grid_t).view(-1, 1).expand( |
|
-1, llm_grid_h * llm_grid_w).flatten() |
|
h_index = torch.arange(llm_grid_h).view(1, -1, 1).expand( |
|
llm_grid_t, -1, llm_grid_w).flatten() - (llm_grid_h-1) // 2 |
|
w_index = torch.arange(llm_grid_w).view(1, 1, -1).expand( |
|
llm_grid_t, llm_grid_h, -1).flatten() - (llm_grid_w-1) // 2 |
|
t_index = t_index + st_idx |
|
h_index = h_index + t_index |
|
w_index = w_index + t_index |
|
|
|
llm_pos_ids_list.append( |
|
torch.stack([t_index, h_index, w_index]).unsqueeze(dim=1)) |
|
|
|
if input_embeds.shape[1] > video_se[1]: |
|
text_len = input_embeds.shape[1] - video_se[1] |
|
|
|
|
|
llm_pos_ids_list.append(torch.arange(llm_pos_ids_list[-1][0].max().item() + 1, llm_pos_ids_list[-1][0].max().item() + 1 + text_len).view(1, 1, -1).expand(3, 1, -1)) |
|
|
|
position_ids = torch.cat(llm_pos_ids_list, dim=-1) |
|
assert position_ids.shape[-1] == input_embeds.shape[1], f'shape mismatch! {position_ids.shape[-1]=}, {input_embeds.shape[1]=}' |
|
return position_ids |
|
|
|
def get_position_ids(input_embeds, rope_type, video_se): |
|
if rope_type == 'vanilla_rope': |
|
return get_vanilla_rope_index(input_embeds, video_se) |
|
elif rope_type == 'tad_rope': |
|
return get_time_rope_index(input_embeds, video_se) + get_vanilla_rope_index(input_embeds, video_se) |
|
elif rope_type == 'm_rope': |
|
return get_m_rope_index(input_embeds, video_se) |
|
elif rope_type == 'videorope': |
|
scale_factor = 2.0 |
|
return get_t_scale2_rope_index(input_embeds, video_se, scale_factor) |
|
else: |
|
raise ValueError(f"not this rope: {rope_type}") |
|
|
|
|
|
def eval_forward(args, video_se, accelerator, model, input_embeds, answer_embeds, pad_id, answer_ids, tokenizer): |
|
|
|
prompt_length = input_embeds.shape[1] |
|
labels_length = answer_embeds.shape[1] |
|
input_embeds = torch.cat([input_embeds, answer_embeds], dim=1) |
|
|
|
pad_tensor = torch.tensor( |
|
[pad_id] |
|
* ( |
|
(accelerator.num_processes * 2) |
|
- input_embeds.shape[1] % (accelerator.num_processes * 2) |
|
) |
|
).unsqueeze(0).unsqueeze(-1).expand(-1, -1, input_embeds.shape[-1]).to(accelerator.device) |
|
input_embeds = torch.cat([input_embeds, pad_tensor], dim=1) |
|
|
|
|
|
|
|
position_ids = get_position_ids(input_embeds, args.rope_type, video_se) |
|
|
|
accelerator.print(input_embeds.shape) |
|
prepared = prepare_seq_parallel_inputs( |
|
"zigzag_ring_attn", |
|
input_embeds, |
|
position_ids, |
|
None, |
|
accelerator.process_index, |
|
accelerator.num_processes, |
|
accelerator.device, |
|
) |
|
local_input_embeds = prepared["local_input_ids"] |
|
local_position_ids = prepared["local_position_ids"] |
|
if 'm_modify' in args.rope_type or 't_only' in args.rope_type or 'change_freq' in args.rope_type: |
|
from transformers.models.qwen2_vl import modeling_qwen2_vl |
|
modeling_qwen2_vl.apply_multimodal_rotary_pos_emb = modeling_qwen2_vl.apply_m_modify_multimodal_rotary_pos_emb |
|
with torch.inference_mode(): |
|
hidden_states = model.model( |
|
inputs_embeds=local_input_embeds, |
|
position_ids=local_position_ids, |
|
use_cache=False, |
|
)[0] |
|
logits = model.lm_head(hidden_states) |
|
logits = logits.float() |
|
|
|
pred = logits.argmax(dim=-1) |
|
|
|
|
|
def undo_extract_local(gathered_value, world_size, dim=1): |
|
value_chunks = gathered_value.chunk(2 * world_size, dim=dim) |
|
reordered_chunks = [None] * (2 * world_size) |
|
for i in range(world_size): |
|
reordered_chunks[i] = value_chunks[i * 2] |
|
reordered_chunks[2 * world_size - i - 1] = value_chunks[i * 2 + 1] |
|
return torch.cat(reordered_chunks, dim=dim) |
|
|
|
correct = False |
|
|
|
gathered_logits = accelerator.gather(pred.squeeze(0)).unsqueeze(0) |
|
|
|
|
|
pred = undo_extract_local(gathered_logits, accelerator.num_processes) |
|
pred = pred[:, prompt_length - 1 : prompt_length + labels_length - 1] |
|
|
|
|
|
correct = (pred == answer_ids.to(accelerator.device)).all() |
|
if accelerator.is_main_process: |
|
print( |
|
"Predicted: ", |
|
tokenizer.decode(pred.squeeze().tolist()), |
|
"Answer: ", |
|
tokenizer.decode(answer_ids.squeeze().tolist()), |
|
) |
|
|
|
print( |
|
"Predicted: ", |
|
pred.squeeze().tolist(), |
|
"Answer: ", |
|
answer_ids.squeeze().tolist(), |
|
) |
|
return int(correct) |
|
|
|
|
|
def load_haystack(args, accelerator): |
|
haystack_embeddings = torch.load(f"{args.haystack_dir}/video_embeddings.pt").to(torch.bfloat16) |
|
|
|
return haystack_embeddings |
|
|
|
def load_text_embeddings(str, tokenizer, model, accelerator, replace_double_newline=False): |
|
token_ids = safe_tokenize(tokenizer, str) |
|
def replace_double_newline_func(token_ids): |
|
|
|
|
|
|
|
|
|
|
|
double_newline_loc = (token_ids == 271).nonzero()[:, 1] |
|
double_newline_loc += torch.arange(len(double_newline_loc)) |
|
if len(double_newline_loc) > 0: |
|
for loc in double_newline_loc: |
|
token_ids = torch.cat([token_ids[:, :loc], torch.tensor([[198, 198]]), token_ids[:, loc+1:]], dim=1) |
|
return token_ids |
|
if replace_double_newline: |
|
token_ids = replace_double_newline_func(token_ids) |
|
token_ids = token_ids.to(accelerator.device) |
|
with torch.inference_mode(): |
|
embeddings = model.model.embed_tokens(token_ids) |
|
return embeddings.to(torch.bfloat16) |
|
|
|
def inference(args): |
|
accelerator = Accelerator( |
|
mixed_precision="bf16", |
|
) |
|
model_path = args.model |
|
model = Qwen2VLForConditionalGeneration.from_pretrained(model_path, |
|
device_map=accelerator.device, |
|
torch_dtype=torch.bfloat16, |
|
attn_implementation="flash_attention_2" |
|
) |
|
del model.visual |
|
processor = AutoProcessor.from_pretrained("/mnt/hwfile/mllm/weixilin/cache/Qwen2-VL-7B-Instruct") |
|
tokenizer = processor.tokenizer |
|
|
|
|
|
kwargs = {"rope_theta": args.rope_theta} if args.rope_theta is not None else {} |
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
accelerator.print("Preparing Haystack...") |
|
haystack_embeddings = load_haystack(args, accelerator) |
|
target_length = args.max_frame_num * IMAGE_TOKENS |
|
|
|
if len(haystack_embeddings) < target_length: |
|
repeat_times = (target_length + len(haystack_embeddings) - 1) // len(haystack_embeddings) |
|
haystack_embeddings = torch.cat([haystack_embeddings] * repeat_times, dim=0)[:target_length] |
|
|
|
assert len(haystack_embeddings) >= args.max_frame_num * IMAGE_TOKENS, "Haystack embeddings are not enough. Max frame {} is not found. Currently only {} frames.".format(args.max_frame_num, len(haystack_embeddings)) |
|
|
|
|
|
haystack_embeddings = haystack_embeddings[:args.max_frame_num * IMAGE_TOKENS].to(accelerator.device) |
|
prompt = prompt_templates[args.prompt_template] |
|
preprompt_embeddings = load_text_embeddings(prompt["preprompt"], tokenizer, model, accelerator, args.replace_double_newline) |
|
postprompt_embeddings = load_text_embeddings(prompt["postprompt"], tokenizer, model, accelerator, args.replace_double_newline) |
|
|
|
needle_dataset = read_json_file(args.needle_dataset) |
|
answer_embedding_list = [] |
|
answer_id_list = [] |
|
needle_embedding_list = [] |
|
question_embeding_list = [] |
|
for index, instance in enumerate(needle_dataset): |
|
answer = instance["answer"] |
|
question = instance["prompt"] |
|
needle_embedding_list.append(torch.load(args.needle_embedding_dir + f"/{index}.pt", map_location="cpu").to(torch.bfloat16).to(accelerator.device)) |
|
answer_embedding_list.append(load_text_embeddings(answer, tokenizer, model, accelerator)) |
|
answer_id_list.append(safe_tokenize(tokenizer, answer)) |
|
question_embeding_list.append(load_text_embeddings(question, tokenizer, model, accelerator)) |
|
|
|
accelerator.print("Starting Evaluation...") |
|
model = accelerator.prepare(model) |
|
model.gradient_checkpointing_enable() |
|
all_accuries = [] |
|
for num_frames in tqdm( |
|
range( |
|
args.min_frame_num, args.max_frame_num + 1, args.frame_interval |
|
) |
|
): |
|
for depth in np.arange(0, 1 + args.depth_interval, args.depth_interval): |
|
accuracies = [] |
|
for question_embedding, needle_embedding, answer_embedding, answer_id in zip(question_embeding_list, needle_embedding_list, answer_embedding_list, answer_id_list): |
|
query_frame_idx = int(depth * num_frames) |
|
|
|
input_frames = torch.cat([haystack_embeddings[:query_frame_idx * IMAGE_TOKENS].to(accelerator.device),needle_embedding.to(accelerator.device), haystack_embeddings[query_frame_idx*IMAGE_TOKENS:num_frames*IMAGE_TOKENS].to(accelerator.device)], dim=0).view(-1, haystack_embeddings.shape[-1]).unsqueeze(0) |
|
input_emebds = torch.cat([preprompt_embeddings.to(accelerator.device), input_frames.to(accelerator.device),question_embedding.to(accelerator.device), postprompt_embeddings.to(accelerator.device)], dim=1) |
|
video_se = (preprompt_embeddings.shape[1], preprompt_embeddings.shape[1] + input_frames.shape[1]) |
|
correct = eval_forward( |
|
args, video_se, accelerator, model, input_emebds, answer_embedding, tokenizer.pad_token_id, answer_id, tokenizer |
|
) |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
if accelerator.is_main_process: |
|
accuracies.append(correct) |
|
if accelerator.is_main_process: |
|
result = { |
|
"Num. Frame": num_frames, |
|
"Frame Depth": round(depth * 100, -1), |
|
"Score": sum(accuracies) / len(accuracies), |
|
} |
|
accelerator.print(result) |
|
all_accuries.append(result) |
|
if accelerator.is_main_process: |
|
model_name = args.model.split("/")[-1] |
|
os.makedirs(f"{args.output_path}/{model_name}", exist_ok=True) |
|
|
|
with open(f"{args.output_path}/{model_name}/all_accuracies.json", "w") as f: |
|
json.dump(all_accuries, f, indent=4) |
|
return all_accuries, accelerator |
|
|
|
|
|
def plot(args, all_accuries): |
|
df = pd.DataFrame(all_accuries) |
|
cmap = LinearSegmentedColormap.from_list( |
|
"custom_cmap", ["#F0496E", "#EBB839", "#9ad5b3"] |
|
) |
|
|
|
pivot_table = pd.pivot_table( |
|
df, |
|
values="Score", |
|
index=["Frame Depth", "Num. Frame"], |
|
aggfunc="mean", |
|
).reset_index() |
|
pivot_table = pivot_table.pivot( |
|
index="Frame Depth", columns="Num. Frame", values="Score" |
|
) |
|
|
|
plt.figure(figsize=(17.5, 8)) |
|
ax = sns.heatmap( |
|
pivot_table, |
|
|
|
fmt="g", |
|
vmin=0, |
|
vmax=1, |
|
linecolor='white', |
|
linewidths=1.5, |
|
cmap=cmap, |
|
cbar_kws={"label": "Score"}, |
|
) |
|
|
|
|
|
cbar = ax.collections[0].colorbar |
|
cbar.ax.yaxis.label.set_size(14) |
|
cbar.ax.tick_params(labelsize=14) |
|
|
|
|
|
|
|
def thousands_formatter(x, pos): |
|
if x >= 1000: |
|
return f'{x/1000:.1f}K' |
|
return f'{x}' |
|
|
|
context_lengths = pivot_table.columns |
|
formatted_context_lengths = [thousands_formatter(x, None) for x in context_lengths] |
|
|
|
|
|
plt.xlabel("Num. of Frames", fontsize=14) |
|
plt.ylabel("Depth Percent", fontsize=14) |
|
plt.xticks(ticks=[i + 0.5 for i in range(len(context_lengths))], labels=formatted_context_lengths, rotation=45, fontsize=14) |
|
|
|
plt.yticks(rotation=0, fontsize=14) |
|
plt.tight_layout() |
|
|
|
model_name = args.model.split("/")[-1] |
|
|
|
plt.savefig(f"{args.output_path}/{model_name}/heatmap.png") |
|
|
|
average_accuracy = df["Score"].mean() |
|
print(f"Average Accuracy: {average_accuracy}") |
|
|
|
with open(f"{args.output_path}/{model_name}/avg_accuracy.txt", "w") as f: |
|
f.write(f"Average Accuracy: {average_accuracy}\n") |
|
|
|
def main(args): |
|
if args.plot_only: |
|
|
|
model_name = args.model.split("/")[-1] |
|
with open(f"{args.output_path}/{model_name}/all_accuracies.json", "r") as f: |
|
all_accuracies = json.load(f) |
|
plot(args, all_accuracies) |
|
else: |
|
all_accuracies, accelerator = inference(args) |
|
if accelerator.is_main_process: |
|
plot(args, all_accuracies) |
|
|
|
|
|
if __name__ == "__main__": |
|
args = argparse.ArgumentParser() |
|
args.add_argument("--model", type=str, default="/mnt/hwfile/mllm/weixilin/cache/Qwen2-VL-7B-Instruct") |
|
args.add_argument("--max_frame_num", type=int, default=1500) |
|
args.add_argument("--needle_dataset", type=str, default="/mnt/petrelfs/weixilin/projects/MLLM/Qwen2-VL/vision_niah/needle_datasets/dataset.json") |
|
args.add_argument("--min_frame_num", type=int, default=400) |
|
args.add_argument("--frame_interval", type=int, default=100) |
|
args.add_argument("--output_path", type=str, default="/mnt/petrelfs/weixilin/projects/MLLM/Qwen2-VL/vision_niah/niah_output") |
|
args.add_argument("--depth_interval", type=float, default=0.1) |
|
args.add_argument("--num_samples", type=int, default=1) |
|
args.add_argument("--rope_theta", type=float, default=None) |
|
args.add_argument("--haystack_dir", type=str, default="your haystack_dir") |
|
args.add_argument("--needle_embedding_dir", type=str, default="/mnt/petrelfs/weixilin/projects/MLLM/Qwen2-VL/vision_niah/video_needle_haystack/data/needle_vicuna_embeddings") |
|
args.add_argument("--prompt_template", type=str, default='qwen2') |
|
args.add_argument("--image_tokens", type=int, default=144) |
|
args.add_argument("--rope_type", type=str, default=None) |
|
args.add_argument("--replace_double_newline", action="store_true") |
|
args.add_argument("--plot_only", action="store_true") |
|
args = args.parse_args() |
|
IMAGE_TOKENS = args.image_tokens |
|
main(args) |
|
|