VideoRoPE / vision_niah_d /produce_haystack_embedding.py
Wiselnn's picture
Upload folder using huggingface_hub (#1)
4eedc1a verified
raw
history blame
6.68 kB
from qwen_vl_utils import process_vision_info
from decord import VideoReader, cpu
import argparse
import os
import numpy as np
from tqdm import tqdm
import torch
import transformers
import math
from PIL import Image
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from torchvision import io, transforms
from torchvision.transforms import InterpolationMode
IMAGE_FACTOR = 28
MIN_PIXELS = 144 * 28 * 28
MAX_PIXELS = 144 * 28 * 28
MAX_RATIO = 200
def load_video_batches(video_path, batch_size):
global args
vr = VideoReader(video_path, ctx=cpu(0))
total_frame_num = len(vr)
fps = round(vr.get_avg_fps())
frame_idx = [i for i in range(0, len(vr), fps)]
for start_idx in range(0, len(frame_idx), batch_size):
end_idx = min(start_idx + batch_size, total_frame_num)
frame_indices = frame_idx[start_idx:end_idx]
batch_frames = vr.get_batch(frame_indices).asnumpy()
batch_frames = torch.tensor(batch_frames).permute(0, 3, 1, 2)
# import pdb; pdb.set_trace()
nframes, _, height, width = batch_frames.shape
# if torch.unique(batch_frames).numel() == 1:
# batch_frames.fill_(args.v)
# print(torch.unique(batch_frames).item())
resized_height, resized_width = 252, 448
# resized_height, resized_width = smart_resize(
# height,
# width,
# factor=IMAGE_FACTOR,
# min_pixels=MIN_PIXELS,
# max_pixels=MAX_PIXELS,
# )
batch_frames = transforms.functional.resize(
batch_frames,
[resized_height, resized_width],
interpolation=InterpolationMode.BICUBIC,
antialias=True,
).float()
yield batch_frames
def round_by_factor(number: int, factor: int) -> int:
"""Returns the closest integer to 'number' that is divisible by 'factor'."""
return round(number / factor) * factor
def ceil_by_factor(number: int, factor: int) -> int:
"""Returns the smallest integer greater than or equal to 'number' that is divisible by 'factor'."""
return math.ceil(number / factor) * factor
def floor_by_factor(number: int, factor: int) -> int:
"""Returns the largest integer less than or equal to 'number' that is divisible by 'factor'."""
return math.floor(number / factor) * factor
def smart_resize(
height: int, width: int, factor: int = IMAGE_FACTOR, min_pixels: int = MIN_PIXELS, max_pixels: int = MAX_PIXELS
) -> tuple[int, int]:
"""
Rescales the image so that the following conditions are met:
1. Both dimensions (height and width) are divisible by 'factor'.
2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].
3. The aspect ratio of the image is maintained as closely as possible.
"""
if max(height, width) / min(height, width) > MAX_RATIO:
raise ValueError(
f"absolute aspect ratio must be smaller than {MAX_RATIO}, got {max(height, width) / min(height, width)}"
)
h_bar = max(factor, round_by_factor(height, factor))
w_bar = max(factor, round_by_factor(width, factor))
if h_bar * w_bar > max_pixels:
beta = math.sqrt((height * width) / max_pixels)
h_bar = floor_by_factor(height / beta, factor)
w_bar = floor_by_factor(width / beta, factor)
elif h_bar * w_bar < min_pixels:
beta = math.sqrt(min_pixels / (height * width))
h_bar = ceil_by_factor(height * beta, factor)
w_bar = ceil_by_factor(width * beta, factor)
return h_bar, w_bar
def main(args):
video_path = args.video_path
model_path = args.model
model_name = "llava_qwen"
model = Qwen2VLForConditionalGeneration.from_pretrained(model_path,
device_map="auto",
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2"
)
processor = AutoProcessor.from_pretrained("/mnt/petrelfs/weixilin/cache/Qwen2-VL-7B-Instruct")
del model.model.layers
# Process video in batches
batch_size = 32
total_batches = (args.sampled_frames_num + batch_size - 1) // batch_size
image_feature_list = []
if args.add_newline_token:
newline_token_embeddong = model.model.image_newline
with torch.inference_mode():
for i, video_batch in tqdm(enumerate(load_video_batches(video_path, batch_size)), total=total_batches, desc="Processing Video Batches"):
v_test = processor.image_processor(images=None, videos=video_batch)
merge_length = processor.image_processor.merge_size**2
pixel_values_videos,video_grid_thw=torch.from_numpy(v_test['pixel_values_videos']), torch.from_numpy(v_test['video_grid_thw']).to(model.device)
# if i > 30:
# import pdb; pdb.set_trace()
print(video_grid_thw)
# import pdb; pdb.set_trace()
pixel_values_videos = pixel_values_videos.type(model.visual.get_dtype()).to(model.device)
video_embeds = model.visual(pixel_values_videos, grid_thw=video_grid_thw).to(model.device)
print(video_embeds.shape)
if args.add_newline_token:
image_features = torch.cat([image_features, newline_token_embeddong.unsqueeze(0).expand(image_features.shape[0], 1, -1)], dim=1)
image_feature_list.append(video_embeds.to(torch.bfloat16).to("cpu"))
if i > total_batches:
break
image_feature_list = torch.cat(image_feature_list, dim=0)
os.makedirs(args.output_dir, exist_ok=True)
torch.save(image_feature_list, f"{args.output_dir}/video_embeddings.pt")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model", type=str, default="/mnt/petrelfs/weixilin/cache/Qwen2-VL-7B-Instruct")
# parser.add_argument("--v", type=int, default=255)
parser.add_argument("--video_path", type=str, default="/mnt/petrelfs/weixilin/projects/MLLM/LongVA/asset/videos/movie.mp4")
parser.add_argument("--sampled_frames_num", type=int, default=6000)
parser.add_argument("--output_dir", type=str, default="/mnt/petrelfs/weixilin/projects/MLLM/Qwen2-VL/vision_niah/video_needle_haystack/data/haystack_vicuna_embeddings_6000frames-tune_projector")
parser.add_argument("--pooling_size", type=int, default=0)
parser.add_argument("--add_newline_token", action="store_true")
args = parser.parse_args()
main(args)