import argparse import gc import sys import torch from transformers import AutoTokenizer from transformers import LlamaForCausalLM from easy_context import Qwen2ForCausalLM_RingAttn from tqdm import tqdm from accelerate import Accelerator import glob import numpy as np from tqdm import tqdm import gc import matplotlib.pyplot as plt import os from matplotlib.colors import LinearSegmentedColormap import seaborn as sns import pandas as pd from pathlib import Path import random import json from datasets import load_dataset from vision_niah.produce_needle_embedding import read_json_file from easy_context import ( prepare_seq_parallel_inputs, apply_seq_parallel_monkey_patch, ) from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor from torchvision import io, transforms from torchvision.transforms import InterpolationMode apply_seq_parallel_monkey_patch("zigzag_ring_attn", "llama") import sys import pdb class ForkedPdb(pdb.Pdb): """A Pdb subclass that may be used from a forked multiprocessing child """ def interaction(self, *args, **kwargs): _stdin = sys.stdin try: sys.stdin = open('/dev/stdin') pdb.Pdb.interaction(self, *args, **kwargs) finally: sys.stdin = _stdin SEED = 24242424 torch.manual_seed(SEED) random.seed(SEED) np.random.seed(SEED) IMAGE_TOKENS = None prompt_templates = { "mistral": { "preprompt": "[INST]", "postprompt": " [/INST]" }, "vicuna": { "preprompt": "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions. USER:", "postprompt": "ASSISTANT:" }, "llama3": { "preprompt": "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\nYou are a helpful language and vision assistant. You are able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language.<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n", "postprompt": "<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n", }, "qwen2": { "preprompt": "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n", "postprompt": "<|im_end|>\n<|im_start|>assistant\n", }, "yi": { "preprompt": "<|im_start|>system\nAnswer the questions.<|im_end|>\n<|im_start|>user\n", "postprompt": "<|im_end|>\n<|im_start|>assistant\n", }, } # \nAnswer the question using a single word or phrase. # The color of the bottle cap is # answer = "Yellow" def safe_tokenize(tokenizer, text): tokenized = tokenizer.encode(text, return_tensors="pt") if tokenizer.bos_token != None and len(tokenized) > 0 and tokenized[0, 0] == tokenizer.bos_token_id: tokenized = tokenized[:, 1:] return tokenized def get_vanilla_rope_index(input_embeds, video_se): return torch.arange(input_embeds.shape[1]).view(1, 1, -1).expand(3, 1, -1) def get_time_rope_index(input_embeds, video_se): llm_pos_ids_list = [] llm_pos_ids_list.append(torch.arange(video_se[0]).view(1, 1, -1).expand(3, 1, -1)) assert (video_se[1] - video_se[0]) % IMAGE_TOKENS == 0, 'frames should not be float' nframes = (video_se[1] - video_se[0]) // IMAGE_TOKENS ## time rope t_index = torch.arange(llm_pos_ids_list[-1].max().item() + 1, llm_pos_ids_list[-1].max().item() + 1 + nframes).repeat_interleave(IMAGE_TOKENS, dim=0).view(1, 1, -1).expand(3, 1, -1) llm_pos_ids_list.append(t_index) if input_embeds.shape[1] > video_se[1]: text_len = input_embeds.shape[1] - video_se[1] llm_pos_ids_list.append(torch.arange(t_index.max().item() + 1, text_len + t_index.max().item() + 1).view(1, 1, -1).expand(3, 1, -1)) position_ids = torch.cat(llm_pos_ids_list, dim=-1) assert position_ids.shape[-1] == input_embeds.shape[1], f'shape mismatch! {position_ids.shape[-1]=}, {input_embeds.shape[1]=}' return position_ids def get_t_scale2_rope_index(input_embeds, video_se, scale_factor): llm_pos_ids_list = [] llm_pos_ids_list.append(torch.arange(video_se[0]).view(1, 1, -1).expand(3, 1, -1)) st_idx = llm_pos_ids_list[-1][0].max() + 1 if len(llm_pos_ids_list) > 0 else 0 assert (video_se[1] - video_se[0]) % IMAGE_TOKENS == 0, 'frames should not be float' nframes = (video_se[1] - video_se[0]) // IMAGE_TOKENS ## m_rope rope llm_grid_t, llm_grid_h, llm_grid_w = nframes, 9, 16 t_index = torch.arange(llm_grid_t).view(-1, 1).expand( -1, llm_grid_h * llm_grid_w).flatten() h_index = torch.arange(llm_grid_h).view(1, -1, 1).expand( llm_grid_t, -1, llm_grid_w).flatten() - (llm_grid_h-1) // 2 w_index = torch.arange(llm_grid_w).view(1, 1, -1).expand( llm_grid_t, llm_grid_h, -1).flatten() - (llm_grid_w-1) // 2 t_index = t_index * scale_factor t_index = t_index + st_idx h_index = h_index + t_index w_index = w_index + t_index llm_pos_ids_list.append( torch.stack([t_index, h_index, w_index]).unsqueeze(dim=1)) if input_embeds.shape[1] > video_se[1]: text_len = input_embeds.shape[1] - video_se[1] # print(text_len) llm_pos_ids_list.append(torch.arange(llm_pos_ids_list[-1][0].max().item() + 1, llm_pos_ids_list[-1][0].max().item() + 1 + text_len).view(1, 1, -1).expand(3, 1, -1)) # print(llm_pos_ids_list[0].shape, llm_pos_ids_list[1].shape, llm_pos_ids_list[2].shape) position_ids = torch.cat(llm_pos_ids_list, dim=-1) assert position_ids.shape[-1] == input_embeds.shape[1], f'shape mismatch! {position_ids.shape[-1]=}, {input_embeds.shape[1]=}' return position_ids def get_m_rope_index(input_embeds, video_se): llm_pos_ids_list = [] llm_pos_ids_list.append(torch.arange(video_se[0]).view(1, 1, -1).expand(3, 1, -1)) st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0 assert (video_se[1] - video_se[0]) % IMAGE_TOKENS == 0, 'frames should not be float' nframes = (video_se[1] - video_se[0]) // IMAGE_TOKENS ## m_rope rope llm_grid_t, llm_grid_h, llm_grid_w = nframes, 9, 16 t_index = torch.arange(nframes).view(-1, 1).expand(-1, llm_grid_h * llm_grid_w).flatten() h_index = torch.arange(llm_grid_h).view(1, -1, 1).expand(llm_grid_t, -1, llm_grid_w).flatten() w_index = torch.arange(llm_grid_w).view(1, 1, -1).expand(llm_grid_t, llm_grid_h, -1).flatten() llm_pos_ids_list.append(torch.stack([t_index, h_index, w_index]).unsqueeze(dim=1) + st_idx) if input_embeds.shape[1] > video_se[1]: text_len = input_embeds.shape[1] - video_se[1] llm_pos_ids_list.append(torch.arange(llm_pos_ids_list[-1].max().item() + 1, llm_pos_ids_list[-1].max().item() + 1 + text_len).view(1, 1, -1).expand(3, 1, -1)) position_ids = torch.cat(llm_pos_ids_list, dim=-1) assert position_ids.shape[-1] == input_embeds.shape[1], f'shape mismatch! {position_ids.shape[-1]=}, {input_embeds.shape[1]=}' return position_ids def get_m_modify_margin_index(input_embeds, video_se): llm_pos_ids_list = [] llm_pos_ids_list.append(torch.arange(video_se[0]).view(1, 1, -1).expand(3, 1, -1)) st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0 assert (video_se[1] - video_se[0]) % IMAGE_TOKENS == 0, 'frames should not be float' nframes = (video_se[1] - video_se[0]) // IMAGE_TOKENS ## m_rope rope llm_grid_t, llm_grid_h, llm_grid_w = nframes, 9, 16 t_index = torch.arange(llm_grid_t).view(-1, 1).expand( -1, llm_grid_h * llm_grid_w).flatten() h_index = torch.arange(llm_grid_h).view(1, -1, 1).expand( llm_grid_t, -1, llm_grid_w).flatten() - (llm_grid_h-1) // 2 w_index = torch.arange(llm_grid_w).view(1, 1, -1).expand( llm_grid_t, llm_grid_h, -1).flatten() - (llm_grid_w-1) // 2 t_index = t_index + st_idx h_index = h_index + t_index w_index = w_index + t_index llm_pos_ids_list.append( torch.stack([t_index, h_index, w_index]).unsqueeze(dim=1)) if input_embeds.shape[1] > video_se[1]: text_len = input_embeds.shape[1] - video_se[1] # print(text_len) llm_pos_ids_list.append(torch.arange(llm_pos_ids_list[-1].max().item() + 1, llm_pos_ids_list[-1].max().item() + 1 + text_len).view(1, 1, -1).expand(3, 1, -1)) # print(llm_pos_ids_list[0].shape, llm_pos_ids_list[1].shape, llm_pos_ids_list[2].shape) position_ids = torch.cat(llm_pos_ids_list, dim=-1) assert position_ids.shape[-1] == input_embeds.shape[1], f'shape mismatch! {position_ids.shape[-1]=}, {input_embeds.shape[1]=}' return position_ids def get_m_modify_no_center_index(input_embeds, video_se): llm_pos_ids_list = [] llm_pos_ids_list.append(torch.arange(video_se[0]).view(1, 1, -1).expand(3, 1, -1)) st_idx = llm_pos_ids_list[-1][0].max() + 1 if len(llm_pos_ids_list) > 0 else 0 assert (video_se[1] - video_se[0]) % IMAGE_TOKENS == 0, 'frames should not be float' nframes = (video_se[1] - video_se[0]) // IMAGE_TOKENS ## m_rope rope llm_grid_t, llm_grid_h, llm_grid_w = nframes, 9, 16 t_index = torch.arange(llm_grid_t).view(-1, 1).expand( -1, llm_grid_h * llm_grid_w).flatten() h_index = torch.arange(llm_grid_h).view(1, -1, 1).expand( llm_grid_t, -1, llm_grid_w).flatten() w_index = torch.arange(llm_grid_w).view(1, 1, -1).expand( llm_grid_t, llm_grid_h, -1).flatten() llm_pos_ids_list.append( torch.stack([t_index, h_index, w_index]).unsqueeze(dim=1) + st_idx) if input_embeds.shape[1] > video_se[1]: text_len = input_embeds.shape[1] - video_se[1] # print(text_len) llm_pos_ids_list.append(torch.arange(llm_pos_ids_list[-1][0].max().item() + 1, llm_pos_ids_list[-1][0].max().item() + 1 + text_len).view(1, 1, -1).expand(3, 1, -1)) # print(llm_pos_ids_list[0].shape, llm_pos_ids_list[1].shape, llm_pos_ids_list[2].shape) position_ids = torch.cat(llm_pos_ids_list, dim=-1) assert position_ids.shape[-1] == input_embeds.shape[1], f'shape mismatch! {position_ids.shape[-1]=}, {input_embeds.shape[1]=}' return position_ids def get_m_modify_index(input_embeds, video_se): llm_pos_ids_list = [] llm_pos_ids_list.append(torch.arange(video_se[0]).view(1, 1, -1).expand(3, 1, -1)) st_idx = llm_pos_ids_list[-1][0].max() + 1 if len(llm_pos_ids_list) > 0 else 0 assert (video_se[1] - video_se[0]) % IMAGE_TOKENS == 0, 'frames should not be float' nframes = (video_se[1] - video_se[0]) // IMAGE_TOKENS ## m_rope rope llm_grid_t, llm_grid_h, llm_grid_w = nframes, 9, 16 t_index = torch.arange(llm_grid_t).view(-1, 1).expand( -1, llm_grid_h * llm_grid_w).flatten() h_index = torch.arange(llm_grid_h).view(1, -1, 1).expand( llm_grid_t, -1, llm_grid_w).flatten() - (llm_grid_h-1) // 2 w_index = torch.arange(llm_grid_w).view(1, 1, -1).expand( llm_grid_t, llm_grid_h, -1).flatten() - (llm_grid_w-1) // 2 t_index = t_index + st_idx h_index = h_index + t_index w_index = w_index + t_index llm_pos_ids_list.append( torch.stack([t_index, h_index, w_index]).unsqueeze(dim=1)) if input_embeds.shape[1] > video_se[1]: text_len = input_embeds.shape[1] - video_se[1] # print(text_len) llm_pos_ids_list.append(torch.arange(llm_pos_ids_list[-1][0].max().item() + 1, llm_pos_ids_list[-1][0].max().item() + 1 + text_len).view(1, 1, -1).expand(3, 1, -1)) # print(llm_pos_ids_list[0].shape, llm_pos_ids_list[1].shape, llm_pos_ids_list[2].shape) position_ids = torch.cat(llm_pos_ids_list, dim=-1) assert position_ids.shape[-1] == input_embeds.shape[1], f'shape mismatch! {position_ids.shape[-1]=}, {input_embeds.shape[1]=}' return position_ids def get_position_ids(input_embeds, rope_type, video_se): if rope_type == 'vanilla_rope': return get_vanilla_rope_index(input_embeds, video_se) elif rope_type == 'tad_rope': return get_time_rope_index(input_embeds, video_se) + get_vanilla_rope_index(input_embeds, video_se) elif rope_type == 'm_rope': return get_m_rope_index(input_embeds, video_se) elif rope_type == 'videorope': scale_factor = 2.0 return get_t_scale2_rope_index(input_embeds, video_se, scale_factor) else: raise ValueError(f"not this rope: {rope_type}") # answer = "more bet" def eval_forward(args, video_se, accelerator, model, input_embeds, answer_embeds, pad_id, answer_ids, tokenizer): # first append answer_embeds to input_embeds prompt_length = input_embeds.shape[1] labels_length = answer_embeds.shape[1] input_embeds = torch.cat([input_embeds, answer_embeds], dim=1) # second pad input_embeds to the multiple of accelerator.num_processes pad_tensor = torch.tensor( [pad_id] * ( (accelerator.num_processes * 2) - input_embeds.shape[1] % (accelerator.num_processes * 2) ) ).unsqueeze(0).unsqueeze(-1).expand(-1, -1, input_embeds.shape[-1]).to(accelerator.device) input_embeds = torch.cat([input_embeds, pad_tensor], dim=1) # position_ids = ( # torch.arange(input_embeds.shape[1]).unsqueeze(0).expand(input_embeds.shape[0], -1) # ).to(accelerator.device) position_ids = get_position_ids(input_embeds, args.rope_type, video_se) # ForkedPdb().set_trace() accelerator.print(input_embeds.shape) prepared = prepare_seq_parallel_inputs( "zigzag_ring_attn", input_embeds, position_ids, None, accelerator.process_index, accelerator.num_processes, accelerator.device, ) local_input_embeds = prepared["local_input_ids"] local_position_ids = prepared["local_position_ids"] if 'm_modify' in args.rope_type or 't_only' in args.rope_type or 'change_freq' in args.rope_type: from transformers.models.qwen2_vl import modeling_qwen2_vl modeling_qwen2_vl.apply_multimodal_rotary_pos_emb = modeling_qwen2_vl.apply_m_modify_multimodal_rotary_pos_emb with torch.inference_mode(): hidden_states = model.model( inputs_embeds=local_input_embeds, position_ids=local_position_ids, use_cache=False, )[0] logits = model.lm_head(hidden_states) logits = logits.float() pred = logits.argmax(dim=-1) # gather all logits using accelerator.gather def undo_extract_local(gathered_value, world_size, dim=1): value_chunks = gathered_value.chunk(2 * world_size, dim=dim) reordered_chunks = [None] * (2 * world_size) for i in range(world_size): reordered_chunks[i] = value_chunks[i * 2] reordered_chunks[2 * world_size - i - 1] = value_chunks[i * 2 + 1] return torch.cat(reordered_chunks, dim=dim) correct = False gathered_logits = accelerator.gather(pred.squeeze(0)).unsqueeze(0) # undo extract local on the gathered logits # ForkedPdb().set_trace() pred = undo_extract_local(gathered_logits, accelerator.num_processes) pred = pred[:, prompt_length - 1 : prompt_length + labels_length - 1] # check if the logits are correct, extract argmax id # compare the predicted_ids with the labels correct = (pred == answer_ids.to(accelerator.device)).all() if accelerator.is_main_process: print( "Predicted: ", tokenizer.decode(pred.squeeze().tolist()), "Answer: ", tokenizer.decode(answer_ids.squeeze().tolist()), ) # print id as well print( "Predicted: ", pred.squeeze().tolist(), "Answer: ", answer_ids.squeeze().tolist(), ) return int(correct) def load_haystack(args, accelerator): haystack_embeddings = torch.load(f"{args.haystack_dir}/video_embeddings.pt").to(torch.bfloat16) return haystack_embeddings def load_text_embeddings(str, tokenizer, model, accelerator, replace_double_newline=False): token_ids = safe_tokenize(tokenizer, str) def replace_double_newline_func(token_ids): # subsitute token id 271 to two 198] # for example: # from: tensor([[128000, 128006, 9125, 128007, 271, 2675, 527, 264, 11190, 4221, 323, 11376, 18328, 13]]) # to: tensor([[128000, 128006, 9125, 128007, 198, 198, 2675, 527, 264, 11190, 4221, 323, 11376, 18328, 13]]) # length will increase by number of 271 double_newline_loc = (token_ids == 271).nonzero()[:, 1] double_newline_loc += torch.arange(len(double_newline_loc)) if len(double_newline_loc) > 0: for loc in double_newline_loc: token_ids = torch.cat([token_ids[:, :loc], torch.tensor([[198, 198]]), token_ids[:, loc+1:]], dim=1) return token_ids if replace_double_newline: token_ids = replace_double_newline_func(token_ids) token_ids = token_ids.to(accelerator.device) with torch.inference_mode(): embeddings = model.model.embed_tokens(token_ids) return embeddings.to(torch.bfloat16) def inference(args): accelerator = Accelerator( mixed_precision="bf16", ) model_path = args.model model = Qwen2VLForConditionalGeneration.from_pretrained(model_path, device_map=accelerator.device, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2" ) del model.visual processor = AutoProcessor.from_pretrained("/mnt/hwfile/mllm/weixilin/cache/Qwen2-VL-7B-Instruct") tokenizer = processor.tokenizer kwargs = {"rope_theta": args.rope_theta} if args.rope_theta is not None else {} tokenizer.pad_token = tokenizer.eos_token # remember to remove accelerator.print("Preparing Haystack...") haystack_embeddings = load_haystack(args, accelerator) target_length = args.max_frame_num * IMAGE_TOKENS # ForkedPdb().set_trace() if len(haystack_embeddings) < target_length: repeat_times = (target_length + len(haystack_embeddings) - 1) // len(haystack_embeddings) # 向上取整计算需要重复的次数 haystack_embeddings = torch.cat([haystack_embeddings] * repeat_times, dim=0)[:target_length] assert len(haystack_embeddings) >= args.max_frame_num * IMAGE_TOKENS, "Haystack embeddings are not enough. Max frame {} is not found. Currently only {} frames.".format(args.max_frame_num, len(haystack_embeddings)) # import pdb; pdb.set_trace() haystack_embeddings = haystack_embeddings[:args.max_frame_num * IMAGE_TOKENS].to(accelerator.device) prompt = prompt_templates[args.prompt_template] preprompt_embeddings = load_text_embeddings(prompt["preprompt"], tokenizer, model, accelerator, args.replace_double_newline) postprompt_embeddings = load_text_embeddings(prompt["postprompt"], tokenizer, model, accelerator, args.replace_double_newline) needle_dataset = read_json_file(args.needle_dataset) answer_embedding_list = [] answer_id_list = [] needle_embedding_list = [] needle_embedding_interrupt_list = [] question_embeding_list = [] for index, instance in enumerate(needle_dataset): answer = instance["answer"] question = instance["prompt"] needle_embedding_list.append(torch.load(args.needle_embedding_dir + f"/{index}.pt", map_location="cpu").to(torch.bfloat16).to(accelerator.device)) needle_embedding_interrupt_list.append(torch.load(args.needle_embedding_interrupt_dir + f"/{index}.pt", map_location="cpu").to(torch.bfloat16).to(accelerator.device)) answer_embedding_list.append(load_text_embeddings(answer, tokenizer, model, accelerator)) answer_id_list.append(safe_tokenize(tokenizer, answer)) question_embeding_list.append(load_text_embeddings(question, tokenizer, model, accelerator)) accelerator.print("Starting Evaluation...") model = accelerator.prepare(model) model.gradient_checkpointing_enable() all_accuries = [] for num_frames in tqdm( range( args.min_frame_num, args.max_frame_num + 1, args.frame_interval ) ): for depth in np.arange(0, 1 + args.depth_interval, args.depth_interval): accuracies = [] for question_embedding, needle_embedding, needle_embedding_interrupt, answer_embedding, answer_id in zip(question_embeding_list, needle_embedding_list, needle_embedding_interrupt_list, answer_embedding_list, answer_id_list): query_frame_idx = int(depth * num_frames) # import pdb; pdb.set_trace() #! interrupt every 200 frames import random test_p = random.random() mode = 'no' cycle = 200 if query_frame_idx - cycle <= 0 and query_frame_idx + cycle >= num_frames: mode = 'no' elif query_frame_idx < cycle: mode = 'after' elif query_frame_idx + cycle >= num_frames: mode = 'before' elif test_p < 0.5: mode = 'before' else: mode = 'after' print(f"{mode=}") if mode == 'before': input_frames = torch.cat([haystack_embeddings[:(query_frame_idx-cycle) * IMAGE_TOKENS].to(accelerator.device), needle_embedding_interrupt.to(accelerator.device), haystack_embeddings[(query_frame_idx-cycle) * IMAGE_TOKENS:query_frame_idx * IMAGE_TOKENS].to(accelerator.device), needle_embedding.to(accelerator.device), haystack_embeddings[query_frame_idx*IMAGE_TOKENS:num_frames*IMAGE_TOKENS].to(accelerator.device)], dim=0).view(-1, haystack_embeddings.shape[-1]).unsqueeze(0) elif mode == 'after': input_frames = torch.cat([haystack_embeddings[:query_frame_idx * IMAGE_TOKENS].to(accelerator.device),needle_embedding.to(accelerator.device), haystack_embeddings[query_frame_idx*IMAGE_TOKENS:(query_frame_idx+cycle)*IMAGE_TOKENS].to(accelerator.device), needle_embedding_interrupt.to(accelerator.device), haystack_embeddings[(query_frame_idx+cycle)*IMAGE_TOKENS:num_frames*IMAGE_TOKENS].to(accelerator.device)], dim=0).view(-1, haystack_embeddings.shape[-1]).unsqueeze(0) else: input_frames = torch.cat([haystack_embeddings[:query_frame_idx * IMAGE_TOKENS].to(accelerator.device),needle_embedding.to(accelerator.device), haystack_embeddings[query_frame_idx*IMAGE_TOKENS:num_frames*IMAGE_TOKENS].to(accelerator.device)], dim=0).view(-1, haystack_embeddings.shape[-1]).unsqueeze(0) input_emebds = torch.cat([preprompt_embeddings.to(accelerator.device), input_frames.to(accelerator.device),question_embedding.to(accelerator.device), postprompt_embeddings.to(accelerator.device)], dim=1) video_se = (preprompt_embeddings.shape[1], preprompt_embeddings.shape[1] + input_frames.shape[1]) # ForkedPdb().set_trace() correct = eval_forward( args, video_se, accelerator, model, input_emebds, answer_embedding, tokenizer.pad_token_id, answer_id, tokenizer ) gc.collect() torch.cuda.empty_cache() if accelerator.is_main_process: accuracies.append(correct) if accelerator.is_main_process: result = { "Num. Frame": num_frames, "Frame Depth": round(depth * 100, -1), "Score": sum(accuracies) / len(accuracies), } accelerator.print(result) all_accuries.append(result) if accelerator.is_main_process: model_name = args.model.split("/")[-1] os.makedirs(f"{args.output_path}/{model_name}", exist_ok=True) # save all_accuries as json with open(f"{args.output_path}/{model_name}/all_accuracies.json", "w") as f: json.dump(all_accuries, f, indent=4) return all_accuries, accelerator def plot(args, all_accuries): df = pd.DataFrame(all_accuries) cmap = LinearSegmentedColormap.from_list( "custom_cmap", ["#F0496E", "#EBB839", "#9ad5b3"] ) pivot_table = pd.pivot_table( df, values="Score", index=["Frame Depth", "Num. Frame"], aggfunc="mean", ).reset_index() # This will aggregate pivot_table = pivot_table.pivot( index="Frame Depth", columns="Num. Frame", values="Score" ) # Create the heatmap with better aesthetics plt.figure(figsize=(17.5, 8)) # Can adjust these dimensions as needed ax = sns.heatmap( pivot_table, # annot=True, fmt="g", vmin=0, vmax=1, linecolor='white', linewidths=1.5, cmap=cmap, cbar_kws={"label": "Score"}, ) # Set the color bar label font size cbar = ax.collections[0].colorbar cbar.ax.yaxis.label.set_size(14) cbar.ax.tick_params(labelsize=14) # Define the formatter function def thousands_formatter(x, pos): if x >= 1000: return f'{x/1000:.1f}K' return f'{x}' context_lengths = pivot_table.columns formatted_context_lengths = [thousands_formatter(x, None) for x in context_lengths] # More aesthetics plt.xlabel("Num. of Frames", fontsize=14) # X-axis label plt.ylabel("Depth Percent", fontsize=14) # Y-axis label plt.xticks(ticks=[i + 0.5 for i in range(len(context_lengths))], labels=formatted_context_lengths, rotation=45, fontsize=14) # plt.xticks(rotation=45, fontsize=14) # Rotates the x-axis labels to prevent overlap plt.yticks(rotation=0, fontsize=14) # Ensures the y-axis labels are horizontal plt.tight_layout() # Fits everything neatly into the figure area # save model_name = args.model.split("/")[-1] plt.savefig(f"{args.output_path}/{model_name}/heatmap.png") # calculate average accuracy average_accuracy = df["Score"].mean() print(f"Average Accuracy: {average_accuracy}") # save as txt with open(f"{args.output_path}/{model_name}/avg_accuracy.txt", "w") as f: f.write(f"Average Accuracy: {average_accuracy}\n") def main(args): if args.plot_only: # load all_accuracies from json model_name = args.model.split("/")[-1] with open(f"{args.output_path}/{model_name}/all_accuracies.json", "r") as f: all_accuracies = json.load(f) plot(args, all_accuracies) else: all_accuracies, accelerator = inference(args) if accelerator.is_main_process: plot(args, all_accuracies) if __name__ == "__main__": args = argparse.ArgumentParser() args.add_argument("--model", type=str, default="/mnt/hwfile/mllm/weixilin/cache/Qwen2-VL-7B-Instruct") args.add_argument("--max_frame_num", type=int, default=1500) args.add_argument("--needle_dataset", type=str, default="/mnt/petrelfs/weixilin/projects/MLLM/Qwen2-VL/vision_niah/needle_datasets/dataset_change_format.json") args.add_argument("--min_frame_num", type=int, default=400) args.add_argument("--frame_interval", type=int, default=100) args.add_argument("--output_path", type=str, default="/mnt/petrelfs/weixilin/projects/MLLM/Qwen2-VL/vision_niah/niah_output") args.add_argument("--depth_interval", type=float, default=0.1) args.add_argument("--num_samples", type=int, default=1) args.add_argument("--rope_theta", type=float, default=None) args.add_argument("--haystack_dir", type=str, default="/mnt/petrelfs/weixilin/projects/MLLM/Qwen2-VL/vision_niah/video_needle_haystack/data/haystack_vicuna_embeddings_concat3000frames_144tokens_has_background") args.add_argument("--needle_embedding_dir", type=str, default="/mnt/petrelfs/weixilin/projects/MLLM/Qwen2-VL/vision_niah/video_needle_haystack/data/needle_vicuna_embeddings") args.add_argument("--needle_embedding_interrupt_dir", type=str, default="/mnt/petrelfs/weixilin/projects/MLLM/Qwen2-VL/vision_niah/video_needle_haystack/data/needle_vicuna_embeddings") args.add_argument("--prompt_template", type=str, default='qwen2') args.add_argument("--image_tokens", type=int, default=144) args.add_argument("--rope_type", type=str, default=None) args.add_argument("--replace_double_newline", action="store_true") args.add_argument("--plot_only", action="store_true") args = args.parse_args() IMAGE_TOKENS = args.image_tokens main(args)