from .dist_flash_attn.prepare_input import prepare_dist_flash_attn_inputs from .dist_flash_attn.monkey_patch import apply_dist_flash_attn_monkey_patch_llama from .zigzag_ring_attn.prepare_inputs import prepare_zigzag_ring_attn_inputs from .zigzag_ring_attn.monkey_patch import apply_zigzag_ring_attn_monkey_patch_llama from .zigzag_ring_attn.monkey_patch import apply_zigzag_ring_attn_monkey_patch_mistral from .unsloth_offloaded_gradient_checkpoint.monkey_patch import apply_unsloth_offloaded_gradient_checkpoint_monkey_patch from .ulysses_attn.prepare_inputs import prepare_ulysses_attn_inputs from .ulysses_attn.monkey_patch import apply_ulysses_attn_monkey_patch_llama from .modeling_qwen2 import Qwen2ForCausalLM_RingAttn def prepare_seq_parallel_inputs( seq_algo, input_ids, position_ids, target_ids, rank, world_size, device ): if seq_algo == "zigzag_ring_attn": return prepare_zigzag_ring_attn_inputs( input_ids, position_ids, target_ids, rank, world_size, device ) elif seq_algo == "dist_flash_attn": return prepare_dist_flash_attn_inputs( input_ids, position_ids, target_ids, rank, world_size, device ) elif seq_algo == "ulysses_attn": return prepare_ulysses_attn_inputs( input_ids, position_ids, target_ids, rank, world_size, device ) elif seq_algo == "data_parallel": return { "local_input_ids": input_ids.to(device), "local_position_ids": position_ids.to(device), "local_target_ids": target_ids.to(device), } else: raise ValueError(f"Invalid seq_algo: {seq_algo}") def apply_seq_parallel_monkey_patch( seq_algo, model ): assert seq_algo in ["zigzag_ring_attn", "dist_flash_attn", "ulysses_attn", "data_parallel"], f"Invalid seq_algo: {seq_algo}" assert model in ["llama", "mistral"], f"Invalid model: {model}" if seq_algo == "data_parallel": return elif seq_algo == "zigzag_ring_attn" and model == "llama": apply_zigzag_ring_attn_monkey_patch_llama() elif seq_algo == "zigzag_ring_attn" and model == "mistral": apply_zigzag_ring_attn_monkey_patch_mistral() elif seq_algo == "dist_flash_attn" and model == "llama": apply_dist_flash_attn_monkey_patch_llama() elif seq_algo == "ulysses_attn" and model == "llama": apply_ulysses_attn_monkey_patch_llama() else: raise ValueError(f"Invalid seq_algo: {seq_algo} or model: {model}") def prepare_dataloader(seq_algo, dataloader, acclerator): if seq_algo == "data_parallel": return acclerator.prepare(dataloader) else: return dataloader