--- license: cc-by-nc-4.0 task_categories: - text-to-video - text-to-image language: - en pretty_name: VideoGrain-dataset source_datasets: - original tags: - video editing - Multi grained Video Editing - text-to-video - Pika - video generation - Video Generative Model Evaluation - Text-to-Video Diffusion Model Development - Text-to-Video Prompt Engineering - Efficient Video Generation --- # VideoGrain: Modulating Space-Time Attention for Multi-Grained Video Editing (ICLR 2025) [Github](https://github.com/knightyxp/VideoGrain) (⭐ Star our GitHub ) [Project Page](https://knightyxp.github.io/VideoGrain_project_page) [ArXiv](https://arxiv.org/abs/2502.17258) [Youtube Video](https://www.youtube.com/watch?v=XEM4Pex7F9E) [HuggingFace Daily Papers Top1](https://huggingface.co/papers/2502.17258) If you think this dataset is helpful, please feel free to leave a star⭐️⭐️⭐️ and cite our paper:
# Summary This is the dataset proposed in our paper [VideoGrain: Modulating Space-Time Attention for Multi-Grained Video Editing](https://arxiv.org/abs/2502.17258) (ICLR 2025). VideoGrain is a zero-shot method for class-level, instance-level, and part-level video editing. - **Multi-grained Video Editing** - class-level: Editing objects within the same class (previous SOTA limited to this level) - instance-level: Editing each individual instance to distinct object - part-level: Adding new objects or modifying existing attributes at the part-level - **Training-Free** - Does not require any training/fine-tuning - **One-Prompt Multi-region Control & Deep investigations about cross/self attn** - modulating cross-attn for multi-regions control (visualizations available) - modulating self-attn for feature decoupling (clustering are available) # Directory ``` data/ ├── 2_cars │ ├── 2_cars # original videos frames │ └── layout_masks # layout masks subfolders (e.g., bg, left, right) ├── 2_cats │ ├── 2_cats │ └── layout_masks ├── 2_monkeys ├── badminton ├── boxer-punching ├── car ├── cat_flower ├── man_text_message ├── run_two_man ├── soap-box ├── spin-ball ├── tennis └── wolf ``` # Download ### Automatical Install the [datasets](https://huggingface.co/docs/datasets/v1.15.1/installation.html) library first, by: ``` pip install datasets ``` Then it can be downloaded automatically with ```python import numpy as np from datasets import load_dataset dataset = load_dataset("XiangpengYang/VideoGrain-dataset") ``` # License This dataset are licensed under the [CC BY-NC 4.0 license](https://creativecommons.org/licenses/by-nc/4.0/deed.en). # Citation ``` @article{yang2025videograin, title={VideoGrain: Modulating Space-Time Attention for Multi-grained Video Editing}, author={Yang, Xiangpeng and Zhu, Linchao and Fan, Hehe and Yang, Yi}, journal={arXiv preprint arXiv:2502.17258}, year={2025} } ``` # Contact If you have any questions, feel free to contact Xiangpeng Yang (knightyxp@gmail.com).