File size: 3,936 Bytes
b17fedc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [],
   "source": [
    "import random\n",
    "import numpy as np\n",
    "import pandas as pd\n",
    "\n",
    "def generate_random_dna_sequence(length):\n",
    "    return ''.join(random.choices('ATGC', k=length))\n",
    "\n",
    "np.random.seed(42)\n",
    "\n",
    "# Generate 200 sequences of random DNA sequences with lengths ranging from 200 to 2000\n",
    "sequence_lengths = np.random.randint(200, 2001, size=200)\n",
    "dna_sequences = [generate_random_dna_sequence(length) for length in sequence_lengths]\n",
    "labels1 = np.random.randint(0, 2, size=200)\n",
    "labels2 = np.random.randint(0, 3, size=200)\n",
    "labels3 = np.random.randint(0, 5, size=200)\n",
    "\n",
    "# Create a DataFrame with the DNA sequences and random labels\n",
    "df_dna = pd.DataFrame({\n",
    "    'sequence': dna_sequences,\n",
    "    'label1': labels1,\n",
    "    'label2': labels2,\n",
    "    'label3': labels3\n",
    "})\n",
    "\n",
    "# Save to CSV\n",
    "csv_dna_path = \"/data/project/hf_tutorial/data/train.csv\"\n",
    "df_dna.to_csv(csv_dna_path, index=False)\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "# Generate 200 sequences of random DNA sequences with lengths ranging from 200 to 2000\n",
    "sequence_lengths = np.random.randint(200, 2001, size=200)\n",
    "dna_sequences = [generate_random_dna_sequence(length) for length in sequence_lengths]\n",
    "labels1 = np.random.randint(0, 2, size=200)\n",
    "labels2 = np.random.randint(0, 3, size=200)\n",
    "labels3 = np.random.randint(0, 5, size=200)\n",
    "\n",
    "# Create a DataFrame with the DNA sequences and random labels\n",
    "df_dna = pd.DataFrame({\n",
    "    'sequence': dna_sequences,\n",
    "    'label1': labels1,\n",
    "    'label2': labels2,\n",
    "    'label3': labels3\n",
    "})\n",
    "\n",
    "# Save to CSV\n",
    "csv_dna_path = \"/data/project/hf_tutorial/data/eval.csv\"\n",
    "df_dna.to_csv(csv_dna_path, index=False)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Function to generate a random string of a given length\n",
    "def generate_random_string(length):\n",
    "    return ''.join(random.choices('ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789', k=length))\n",
    "\n",
    "# Generate random strings for each label category\n",
    "label1_strings = {0: generate_random_string(2), 1: generate_random_string(2)}\n",
    "label2_strings = {i: generate_random_string(3) for i in range(3)}\n",
    "label3_strings = {i: generate_random_string(5) for i in range(5)}\n",
    "\n",
    "# Save each string to a separate text file\n",
    "label1_path = \"/data/project/hf_tutorial/data/label1.txt\"\n",
    "label2_path = \"/data/project/hf_tutorial/data/label2.txt\"\n",
    "label3_path = \"/data/project/hf_tutorial/data/label3.txt\"\n",
    "\n",
    "def save_label_strings(label_strings, path):\n",
    "    with open(path, 'w') as f:\n",
    "        for label, string in label_strings.items():\n",
    "            f.write(f\"{label}: {string}\\n\")\n",
    "\n",
    "save_label_strings(label1_strings, label1_path)\n",
    "save_label_strings(label2_strings, label2_path)\n",
    "save_label_strings(label3_strings, label3_path)\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.13"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}